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Abstract. Multi-connectivity, which allows a user equipment to be simultane-

ously connected to multiple cells from different radio access network nodes that 

can be from a single or multiple radio access technologies, has emerged as a use-

ful feature to handle the traffic in heterogeneous cellular scenarios and fulfill high 

data rate and reliability requirements. This paper proposes the use of deep rein-

forcement learning to optimally split the traffic among cells when multi-connec-

tivity is considered in a heterogeneous 4G/5G networks scenario. Obtained re-

sults reveal a promising capability of the proposed Deep Q Network solution to 

select quasi optimum traffic splits depending on the current traffic and radio con-

ditions in the considered scenario. Moreover, the paper analyses the robustness 

of the obtained policy in front of variations with respect to the conditions used 

during the training. 

Keywords: Multi-connectivity, deep reinforcement learning, Deep Q Network, 

heterogeneous networks 

1 Introduction  

With the advent of 5G Mobile Network Operators (MNOs) face further increase in net-

work deployment heterogeneity with different cell types (e.g. macrocells, indoor and 

outdoor small cells) based on multiple Radio Access Technologies (RATs) (e.g., 2G, 

3G, 4G and 5G New Radio (5G NR)), operating in different spectrum bands (e.g. sub 

6 GHz bands used by all RATs and millimeter wave (mmW) bands used by 5G New 

Radio). In this context, Multi-Connectivity (MC) technology enables a User Equipment 

(UE) to be simultaneously connected to multiple nodes of the Radio Access Network 

(RAN), e.g. eNodeBs (eNB) operating with LTE and/or gNodeBs (gNB) operating with 

5G NR [1,2]. There is one master node (MN) responsible for the radio-access control 

plane and one, or in the general case multiple, secondary node(s) (SN) that provide 

additional user-plane links. In this way, a UE can aggregate the radio resources from 

multiple eNBs/gNBs, which allows efficiently achieving the 5G requirements of high 
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data rate and ultra-reliability. The literature has considered different problems in rela-

tion to MC, such as the resource allocation in [3,4] or the traffic split [5-8].  

This paper addresses the traffic split multi-connectivity problem in multi RAT sce-

narios by exploiting Deep Q Network (DQN) technique [9] to obtain a policy that al-

lows optimally distributing the traffic of a UE across the different RATs and cells while 

fulfilling the QoS requirements and optimizing the bandwidth consumption of the UE, 

so that overload situations are avoided in the involved cells. Deep reinforcement learn-

ing techniques such as DQN are useful for optimizing dynamic decision-making prob-

lems that depend on a large number of input variables taking a wide range of possible 

values. This is the case of the MC problem formulated in this paper, for which a DQN 

solution is presented and assessed by means of simulations. In addition, the results pre-

sented in this paper pay particular attention to the capability of the solution to generalize 

the knowledge learnt during the training phase. In this direction, the robustness of the 

learnt policy is analyzed when the conditions experienced by the algorithm differ from 

the ones that were considered during the training. 

The rest of the paper is organised as follows. Section 2 presents the system model 

and formulates the considered multi-connectivity problem. The proposed DQN-based 

solution is presented in Section 3 and different performance results are provided in 

Section 4. Finally, Section 5 summarises the conclusions.  

2 System model and problem definition 

Let us consider a heterogeneous RAN where different UEs with multi-connectivity ca-

pabilities are camping. A given UE u considers M different RATs and N different cells 

per RAT as candidates for the multi-connectivity. Then, let us denote as Au={Cm,n} the 

set of candidate cells detected by the UE u. Cm,n denotes the n-th cell of the m-th RAT 

with n=1, ..., N and m=1,...,M. It is worth mentioning that, due to the mobility of the 

UE, the specific cells that the UE detects in a given RAT may change with time. In this 

respect, it is assumed that the N cells of a RAT correspond to the best N cells detected 

by the UE at a certain time based on measurements averaged during a time window T. 

Through the use of multi-connectivity, the traffic of the u-th UE is split across mul-

tiple RATs/cells of the set Au. It is assumed that, at a certain time, the UE can be sim-

ultaneously connected to a maximum of Nmax cells among the M·N candidates. The 

multi-connectivity configuration for the u-th UE can be expressed as the M ×N matrix 

={m,n} where m,n[0,1] defines the fraction of total traffic of UE u that is delivered 

through the n-th cell of the m-th RAT. Then, the objective is to find the optimal config-

uration ={n,m} to be applied in a time window of T s that allow ensuring the Quality 

of Service (QoS) requirements with minimum resource consumption and avoiding 

overload situations in the different RATs/cells. In this respect, it is assumed that the 

QoS requirements of the user u are expressed in terms of a required bit rate Ru (b/s) to 

be provided. 
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To formalize the problem, let us denote as Tu() the total throughput or bit rate ob-

tained by user u during the last time window period T with the multi-connectivity con-

figuration . Let us also denote am,n(m,n) as the number of physical resource blocks 
(PRBs) in the m-th cell and n-th RAT assigned to the u-th UE to transmit the traffic 

corresponding to m,n. Considering that bm,n corresponds to the bandwidth of one PRB in 
the m-th cell and n-th RAT, the bandwidth allocated to the user u in this RAT, denoted 
as 𝛾(𝛽𝑚,𝑛),  is given by:  

 𝛾(𝛽𝑚,𝑛) = 𝑎𝑚,𝑛(𝛽𝑚,𝑛). 𝑏𝑚.𝑛   (1) 

 In addition, the total fraction of occupied PRBs in a RAT/cell accounting for all the 

UEs connected to that cell is denoted as m,n(m,n). Then, the considered problem to be 
solved for the u-th UE is formally defined as: 

𝚩 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜝

[
1

𝑤𝑚𝑎𝑥
∑ ∑ 𝛾(𝛽𝑚,𝑛)𝑁

𝑛=1
𝑀
𝑚=1 ]  (2) 

 s.t.   𝑇𝑢(𝜝) ≥ 𝑅𝑢 ,    𝜌𝑚,𝑛(𝛽𝑚,𝑛) ≤ 𝜌𝑚𝑎𝑥   ∀𝑚, 𝑛 

∑ ∑ 𝛽𝑚,𝑛

𝑁

𝑛=1

𝑀

𝑚=1

= 1 

where 𝑤𝑚𝑎𝑥 is the maximum possible bandwidth to be assigned to the user u and 

max[0,1] is the maximum threshold established to avoid overload situations in a cell. 

 

Fig. 1 depicts the architectural components to enforce the multi-connectivity config-

uration  in the network, obtained as a result of the above problem. The figure illus-

trates an example for the downlink traffic transmitted to a UE served by two cells of 

RAT m=1 (e.g., 5G). The cell n=1 is handled by the MN and the cell n=2 by the SN. 

The traffic between these cells is split at the Packet Data Convergence Protocol (PDCP) 

layer of the MN using dual connectivity feature. The multi-connectivity configuration 

is determined by an MC controller that takes as an input different measurement from 

the RATs/cells as it will be explained in Section 3. The output of the MC controller is 

the configuration ={m,n} with the weights m,n to be configured at the PDCP layer of 

the MN to split the traffic between cells 1 and 2. Finally, the Medium Access Control 

(MAC) scheduler in each 5G NR or LTE cell will allocate the necessary amount of 

PRBs am,n(m,n) to the UE to transmit the fraction of traffic m,n corresponding to the 

cell. The specific design of the MAC scheduler is out of the scope of this work, but in 

general it will consider aspects such as the propagation and interference conditions ob-

served by the UE, the QoS requirements, the amount of UEs in the cell, etc.  
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Fig. 1. Architectural components of the considered approach 

3 DQN-based solution 

A DQN approach is considered in this paper for solving the MC problem formulated in 

previous section. In this approach, the learning process is conducted dynamically by a 

DQN agent at the MC controller of Fig. 1 that makes decisions for the different UEs. 

The agent operates in discrete times with granularity equal to the time window duration 

T. These discrete times are denoted as t, t+1, ..., t+k,... At time t the DQN selects an 

action a(t) that contains the MC configuration to be applied for a given UE in the next 

time window. The action selection is based on the current state at time t, denoted as s(t) 

and on the decision-making policy available at this time. Then, as a result of applying 

the selected MC configuration, a reward signal r(t+1) is provided to the DQN agent at 

the end of the time window. This reward signal measures how good or bad was the last 

performed action and therefore it is used to improve the decision-making policy. The 

different components of this process are detailed in the following. 

3.1 State, action and reward specification 

The state s(t) is a vector that includes the following components for a given UE u: 

 Requirements of UE u: Ru. 

 Spectral efficiency per RAT/cell {Sm,n} of UE u. 

 Current configuration ={m,n}, which corresponds to the configuration applied at 
time t-1.  

 Bandwidth occupied by the UE u in each RAT/cell { 𝛾(𝛽𝑚,𝑛)}.   

 Fraction of total occupied resources in each RAT/cell {m,n(m,n)}. 

All the values Sm,n, 𝛾(𝛽𝑚,𝑛) and m,n(m,n) are average values measured during the 

last time window of duration T, i.e. between discrete times t-1 and t.  

Each action a(t)𝒜 represents a matrix ={m,n} that corresponds to the MC con-

figuration to be applied during the next time window T. The action space 𝒜 includes 

all the MC configurations and is defined by considering that the possible m,n values are 

discretized with granularity  and the aggregate of all m,n values in matrix B equals 1. 
Moreover, the action space considers that the UE can be simultaneously connected to at 
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most Nmax cells of the N·M candidates, i.e. that at most Nmax values of m,n can be different 
from 0. 

The reward r(t+1) intends to measure how good or bad was the performance obtained 
by the last action a(t) for the state s(t) in relation to the target of the optimization. Then, 
considering the optimization problem (2), and that the last action a(t) is given by MC 

configuration ={m,n}, the reward is defined as: 

                       𝑟(𝑡 + 1) = (1 −
1

𝑤𝑚𝑎𝑥
∑ ∑ 𝛾(𝛽𝑚,𝑛)𝑁

𝑛=1
𝑀
𝑚=1 ) · 𝑚𝑖𝑛 (1,

𝑇𝑢(𝚩)

𝑅𝑢
)  (3) 

                       · ∏ 𝑚𝑖𝑛 (1,
𝜌𝑚𝑎𝑥

𝜌𝑚,𝑛(𝛽𝑚,𝑛)
)𝑚,𝑛

𝛽𝑚,𝑛>0
  

The first term in r(t+1) captures the total bandwidth assigned to the UE u in all the 
cells/RATs, so the lower the amount of bandwidth assigned the higher will be the re-
ward. The second term represents a penalty introduced when the achieved throughput 

Tu() is lower than the minimum requirement Ru. The last term introduces a penalty for 

each cell/RAT in which the UE has transmitted traffic (i.e. m,n>0) and the cell is over-

loaded. Note that the values of γm,n(m,n),  m,n(m,n) and Tu() correspond to the averages 

obtained during the time window T  between discrete times t and t+1.  

3.2 Policy learning process 

The DQN agent dynamically learns the decision-making policy π used to select the dif-
ferent actions based on the rewards obtained from previous decisions. This is done by 
means of the DQN algorithm of [9] particularised to the state, action and reward signals 
presented above. In summary, the algorithm aims at finding the optimal policy that max-
imises the discounted cumulative expected reward by approximating the optimum ac-

tion-value function with a deep neural network (DNN) denoted as Q(s, a,), where s is 

the observed state, a is one of the possible actions that can be selected and  are the 
weights of the interconnections between the different neurons in the DNN. Given the 
DNN, the decision making policy consists in selecting the action a with the highest value 

of Q(s, a,) for a given state.  

The decision-making policy is updated progressively by modifying the weights 

based on the experiences gathered by the DQN agent. For this purpose, at a certain 
time t the DQN agent observes the state of the environment s(t) for a given UE and it 
triggers an action by selecting with probability 1- ε the action a(t) with the highest value 

of Q(s,a,) and with probability ε a random action. As a result, the DQN agent gathers 
the obtained reward and the new state at time t+1 and stores this experience (i.e., s(t), 
a(t), r(t+1), s(t+1)) in an experience dataset. The information collected in this dataset is 

then used to update the weights  of the DNN using the expressions detailed in [9]. 

4 Performance evaluation 

This section evaluates the performance of the proposed solution by means of system 

level simulations. 
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4.1 Scenario description 

The considered scenario is a square area of 500 m x 500 m composed by four 5G NR 

cells and two LTE cells. The relevant parameters of the cells are presented in Table 1. 

The scenario assumes a non-homogeneous traffic distribution with MC-capable UEs 

moving at 1 m/s along the scenario and have an active session during the whole simu-

lation duration with a required bit rate Ru=50 Mb/s. The candidate cells of the UEs can 

connect to  M=2 RATs and N=2 cell per RAT, and the maximum number of cells that 

the UE can be connected to using MC is Nmax =2.  Additional background traffic is 

considered, with UEs generating Poisson session arrivals with aggregate generation rate 

0.8 sessions/s and exponentially distributed session duration with average 120s. A 

background UE remains static during a session. 50% of the background UEs are ran-

domly located inside a square hotspot of 250 m x 250 m centred at the middle of the 

scenario. The rest of background UEs are randomly distributed in the whole scenario. 

Background UEs connect to the RAT/cell with the highest Signal to Interference and 

Noise Ratio (SINR). To capture the different bit rates achievable by the two technolo-

gies, when a background UE is connected to LTE, its serving cell allocates the needed 

resource blocks to achieve a bit rate of 2.5 Mb/s, and when it is connected to 5G NR, 

the allocation is to achieve a bit rate of 40 Mb/s. 
The DQN model parameters are detailed in Table 2. The DQN model has been de-

veloped in Python using the TF-agents library [10].  

Table 1. Cell configuration parameters 

 

 

 

Parameter Value 

Type of RAT         LTE       5G NR 

Cells position [x, y] m 
[62, 250] 
[437,250] 

[187, 125] [187,375] 
[312,125] [312,375] 

Frequency 2100 MHz 26 GHz 

Subcarrier separation 15 kHz 60 kHz 

Nominal channel bandwidth 20 MHz 50 MHz 

Number of available PRBs 100 66 

Base station transmitted power 49 dBm 21 dBm 

Base station antenna gain 5 dB 26 dB 

Base station height 25 m 10 m 

UE antenna gain 5 dB 10 dB 

Overload threshold max 0.95 0.95 

UE noise figure 9 dB 

UE height 1.5 m 

Path loss model Model of Sec 7.4 of [11] 

𝑤𝑚𝑎𝑥 
95.04 MHz (corresponds to the case when MC 

is done with 2 cells of 5G NR) 
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Table 2. DQN algorithm parameters 

 

4.2 Training Evolution 

The training process of the DQN algorithm is performed by considering a MC-capable 

UE moving along the scenario following trajectories according to random walk and 

with required bit rate Ru=50 Mb/s, while at the same time background UEs also generate 

traffic as explained in section 4.1. The DQN agent decides the MC connectivity con-

figuration of the UE and, based on the obtained rewards, the decision making policy is 

progressively updated as explained in section 3.2. In order to illustrate this learning 

process, the policies that are obtained every 2500 weight updates (i.e. training steps) 

are applied to an evaluation scenario in which an illustrative MC-capable UE follows a 

specific trajectory of duration 400 seconds, starting from point [X1=50, Y1=300] and 

following a straight trajectory up to the point [X2=450, Y2=300] at 1 m/s.  Fig. 1 pre-

sents the evolution of the average reward obtained with the application of these policies 

as a function of the number of training steps. The results of Fig. 2 show that as the 

number of training steps increase average reward values tend to increase until 40x104 

training steps, when the average reward values stabilize.   

 

Fig. 2. Evolution of the average reward as a function of the training steps 

Parameter Value 

Initial collect steps 5000 

Number of policy updates during learning 1e6 

Experience Replay buffer maximum length (l) 1e5 

Mini-batch size (J) 256 

Discount factor(γ) 0.9 

Learning rate (τ) 0.0003 

ɛ value (ɛ-Greedy) 0.1 

 
DNN architecture 

Input layer: 17 nodes 
Two hidden layers: 100 and 50 nodes 

Output layer: 58 nodes 

Time window (ΔT) 1 sec 

Granularity  0.1 
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4.3 Performance evaluation of the DQN-based strategy 

In order to assess the benefits brought by the proposed DQN-based MC strategy, this 

sub-section compares the performance obtained by the proposed approach against two 

benchmarking approaches, namely the optimum strategy and the SINR-based strategy. 

The former consists of applying an exhaustive search process to select in each time step 

the MC configuration with the maximum reward, while the later considers that all the 

traffic of a UE is served by the cell with the highest SINR.  
The comparison is performed by simulating a UE of interest following one hundred 

different trajectories of duration 400 s in the evaluation scenario and applying in each 
time window the MC configuration according to each of the evaluated schemes. For the 
DQN approach, the results correspond to the policy learnt by the DQN agent after a 
training consisting of 1E6 policy updates according to the procedure of Section 3.2. 

Fig. 3 shows the obtained average reward for each one of the trajectories with all the 

considered strategies. It is observed that the DQN-based strategy achieves a perfor-

mance very close to the optimum one in all the studied cases, which confirms the good 

behavior of the proposed approach. In turn, Fig. 3 also shows that the DQN-based strat-

egy outperforms the classical SINR-based strategy in all the studied cases thanks to the 

better distribution of the traffic of the UE among the cells that avoids overload and 

enhances the obtained bit rate. 

 

Fig. 3. Average reward for different trajectories. 

4.4 Analysis of the robustness of the learnt DQN-policy  

This section aims at evaluating the robustness of the DQN-policy when it is applied 

under conditions that differ from the ones that were considered during the training. For 

this purpose, considering that the training process has been done with a required bit rate 

Ru=50 Mb/s, the following results assess the generalization capability of the learnt pol-

icy when it is applied to different Ru values ranging between 15 and 65 Mb/s.  

As a relevant metric for this assessment, a DQN-policy efficiency metric is consid-

ered, defined as the ratio between the reward of the DQN policy and that of the optimum 

strategy. Fig. 4 depicts the DQN-policy efficiency as a function of the required bit rate 

Ru value. The results of policy efficiency correspond to the average for the one hundred 
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trajectories considered in the study. For the Ru value of 50 Mb/s that was considered 

during the training it is observed in Fig. 4 that the efficiency of the original policy is 

around 95.75%. Then, it tends to decrease for higher and lower values of required bit 

rate. In fact, it is worth mentioning the effects of decreasing Ru, because even when the 

amount of required radio resources is less, the efficiency losses are higher. For example, 

the policy efficiency with Ru=15 Mb/s is 13.42% less than with 50 Mb/s. From the red 

line in Fig. 4, we can realize that efficiency variations lower than 1% are observed when 

the Ru value changes from 40 Mb/s up to 65 Mb/s, i.e. -10/+15 Mb/s with respect to the 

value used for training. This reflects that the learnt DQN policy is robust in front of 

variations of around 20-30% of the Ru value used in the training. 

Based on these results, another training process has been conducted with the same 

parameters of Table 2 but now changing the Ru value during training. Specifically, Ru 

at the beginning of the training is 50 Mb/s and then it is changed between 5 Mb/s and 

60 Mb/s with steps of +/- 10%. Moreover, the number training steps has been increased 

up to 3E6 in order to account for a higher number of possible situations to learn. The 

green line in Fig. 4, shows the obtained efficiency with the new learnt policy (denoted 

as retrained policy) in comparison to the original policy. It is clearly observed that the 

new policy achieves a good efficiency for all the considered RBR values. 

 

Fig. 4. DQN-Policy efficiency for different required bit rate (original vs retrained) 

5 Conclusion 

This paper has presented a novel approach based on Deep Q- Network for splitting the 

traffic of a UE among cells when using multi-connectivity depending on the current 

traffic and radio conditions experienced by the UE in the involved cells. The strategy 

intends to minimize the bandwidth consumption, the overload situations in the cells and 

enhancing throughput. The proposed strategy has been evaluated and compared against 

the optimum case and against a classical SINR-based approach. Results have shown 

the capability of the DQN agent to learn a quasi-optimal policy that in certain conditions 
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outperforms the SINR-based approach in up to 33% in terms of reward, obtaining as a 

result better throughput performance with an optimized bandwidth assignment.  

This paper has also analyzed the robustness of the learnt policy when being applied 

with a required bit rate value different than the one that was considered during the train-

ing stage. It has been observed that the learnt policy is able to work properly with var-

iations of the required bit rate of around 20%-30% of the value considered in the train-

ing.  In turn, by conducting a training that considers a wider range of values of required 

bit rate, it is possible to increase the performance of the obtained policy.  
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