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Abstract— This paper proposes a model to detect and solve 

coverage holes in 5G Radio Access Network (RAN) deployments 
operating with millimeter waves. The proposed model utilizes a 
DBSCAN-based detector to identify coverage constrained areas 
and then proposes the use of Relay User Equipment (RUE) 
capabilities to extend the RAN coverage. To optimize the activation 
and deactivation of RUEs, a Deep-Q-Network-based algorithm is 
proposed, aiming to improve spectral efficiency and decrease the 
outage probability experienced by network users. The obtained 
results demonstrate the effectiveness of the model in accurately 
detecting coverage constrained areas and efficiently solving these 
issues by means of an effective RUE activation, leading to 
significant improvements in network performance while 
minimizing the time that RUEs remain in active mode, which 
implies potential benefits for MNOs and UE holders and significant 
energy savings.  
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coverage holes, UE-to-network relaying, DBSCAN, clustering. 

I. INTRODUCTION

The growth of mobile network traffic has been substantial 
and sustained in recent years, according to the Ericsson Mobility 
Report [1]. It is expected that the average data consumption per 
smartphone will surpass 19 GB per month in 2023 and will grow 
to 54 GB by 2028. It is also projected that the number of 5G 
mobile subscriptions will reach 5 billion by 2028. In general, 
mobile traffic is expected to increase in the near future. To cope 
with this demand, mobile network operators (MNOs) must 
upgrade their radio access network (RAN) infrastructure to 
handle the expected increase in traffic. In this context, 
substantial capital expenditures (CAPEX) are required. This 
becomes especially significant when it comes to 5G operations 
in high frequency bands like millimeter waves (mmWave), since 
a higher density of base stations is required to achieve adequate 
coverage from outdoors-to-indoors. 

The use of mmWave in 5G networks allows for increased 
bandwidth, which translates into faster data transfer rates and 
lower latency among other benefits. However, these frequencies 
are also more susceptible to blockage by physical objects such 
as buildings, trees, and other obstacles, which will reduce the 
signal strength received by the User Equipment (UE). This can 
lead to coverage holes, which can impact the quality of service 
experienced by end-users. Overall, a proper diagnostic of the 5G 
network is essential for MNOs to effectively cope with coverage 
issues and consequently enhance end-user’s experience. Some 
of the common coverage issues in mobile networks are 
overshoot coverage, weak coverage, pilot pollution and 
coverage holes, among others [2]. A coverage hole refers to an 
area where the signal level of  the serving  cell is insufficient to 

maintain basic service, such as the Signaling Radio Bearer 
(SRB) and Downlink Shared Channel. Coverage holes can be 
caused by various factors, including physical obstructions like 
new buildings or hills, unsuitable antenna parameters, or 
inadequate RF planning [3].  

When a UE is located in a coverage hole, it may experience 
call drops and radio link failures, which can negatively impact 
the user experience. In the literature there are several methods 
for detecting coverage constrained areas in 5G networks, 
including coverage analysis, performance measurements, drive 
testing and crowdsourced data [2]. In fact, by means of the 
Minimization of Drive Tests (MDT) functionality [3], MNOs 
are able to collect radio network measurements that allows to 
identify issues such as coverage holes, handover problems, 
interference, etc. Therefore, this data can be used for network 
optimization purposes.  For instance, the authors in [4] analyzed 
network performance data to detect weak coverage regions in 
where to place new base stations. They used a clustering 
technique known as Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN). By identifying the 
coverage constrained areas, MNOs can take steps to mitigate the 
impact of coverage gaps, such as deploying additional base 
stations, adjusting the frequency and power of the signals 
transmitted, or making use of Device-to-Device communication 
(D2D), among others techniques as stated in survey [2].   

In recent years, the evolution of network infrastructure and 
UEs technologies have been significant, resulting in the 
availability of UEs with powerful communication and 
computational capabilities. In that respect, D2D communication 
technique becomes a feasible option to solve coverage issues. 
For instance, the study in [5] has shown that the use of Relay 
UEs (RUEs) can provide significant benefits for MNOs by 
reducing the number of base stations required. The idea of using 
relays has been a topic of research for some time (see e.g., [6]). 
3GPP has also studied the use of UEs to relay data in [7] and has 
added it as a connectivity model in [8]. This interest in UE-to-
network relaying is reflected not only in standards but also in 
studies such the recent survey [9]. Different works in the 
literature have studied the use of relay capabilities to enhance 
network coverage. For instance, [10] proposed a functional 
framework for RUE activation based on characterizing potential 
RUEs using a utility metric that assesses the improvement in 
network coverage when the RUE is activated. In [11] an 
underlying D2D multi-hop relay-aided scheme has been 
proposed to improve the coverage capacity. 

In view of the above, this paper focuses on two main 
objectives. Firstly, the detection of coverage holes in base 
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stations, and secondly, the resolution of these coverage holes by 
means of the proper activation of relays. The activation of the 
RUEs must be done according to the potential benefits brought 
by the activation given the network dynamics. Therefore, a key 
factor to consider at the time of designing an efficient solution 
to the coverage holes and RUE activation problem is the space-
time traffic distribution of the network. This can be influenced 
by factors such as the density of UEs, the availability and quality 
of network coverage. The temporal distribution of traffic is also 
influenced by the time of day, day of the week or even for 
occasionally UEs concentrations in sporadic events such as in 
concerts, meetings, etc. Overall, understanding the space-time 
traffic distribution is critical for MNOs to effectively manage 
network resources and optimize network performance. In that 
respect, we consider all these factors at the time of designing the 
network coverage enhancement by means of RUE activation. To 
approach the aforementioned aspects, the paper relies on the use 
of two main tools: DBSCAN algorithm [12] for the detection of 
coverage holes and on the Deep-Q Network (DQN) [13] 
technique for the coverage enhancement by means of activation 
of RUEs. To the authors’ best knowledge, the combination of 
DBSCAN and DQN techniques to detect coverage holes 
considering space-time traffic distributions and resolve it by 
means of RUEs activation has not been previously explored and 
therefore this constitutes the main novelty of this paper. 

The rest of the paper is organised as follows. Section II 
presents the system model and formulates the considered 
problem. The proposed DBSCAN-DQN-based solution is 
presented in Section III and different performance results are 
provided in Section IV. Finally, Section V summarises the 
conclusions.  

II. SYSTEM MODEL AND PROBLEM DEFINITION 

The scenario under consideration consists of a RAN that 
includes a Base Station (BS), the Core Network (CN), and the 
Service Management and Orchestration (SMO) system, which 
enables the configuration and monitoring of the network’s 
performance, as used for example in the O-RAN architecture 
[14]. The considered approach can be split into two stages: the 
coverage hole detection and the solution of this by means of 
RUE activation as depicted in Fig. 1. Both processes are 
described in detail in sections III.A and III.B respectively. Once 
the coverage holes have been detected, the next step is to find a 
solution to this problem. In this respect, this work considers the 
option of activating some UEs to act as relays for other UEs. In 
this manner, a UE can communicate with the Core Network 
either through a direct connection with the BS or through a RUE, 
as illustrated in Fig. 1. For a UE to be considered as a candidate 
RUE that can be activated to act as relay, it must meet certain 
conditions. For example, it should remain stationary for a long 
period of time and outside of a coverage hole, have good enough 
signal quality, and have a battery level above a certain threshold. 
Additionally, there must be an agreement between the MNO and 
the UE holder. The latter is outside the scope of this work, but 
can be based for example on incentivizing strategies for the UE 
holder as explained in [9]. 

The SMO system features a Relay Activation Management 
(RAM) function that decides when, where, and under what 
circumstances a UE connected to a BS is eligible to be activated 
as a RUE. The activation of RUEs for a specific BS is performed 

by the RUE activation controller (RAC) within the RAM 
function of the SMO. The RAM, in turn, holds a database with 
a list of candidate RUEs and their associated information, such 
as position, ID, mode (i.e. active or inactive), and availability 
probability based on the time of day. This data together with 
specific performance measurements collected from the network 
constitute the inputs to the RAC, so that it can decide when to 
activate the RUEs, as depicted in Fig. 1.  

To formally address the problem, let us consider a UE 
located in the coverage area of a given base station. If the UE 
has a direct connection with the BS, the spectral efficiency SD 
can be calculated using the Shannon formula.  

SD= min�Smax, log
2
�1+SINRBS-UE��             (1) 

where Smax value represents the highest spectral efficiency 
achievable by using the Maximum Modulation and Coding 
Scheme (MSC) defined in 5G NR [15]. Meanwhile, SINRBS-UE 
refers to signal to interference and noise ratio (SINR) in the 
connection between the UE and the BS. In case that the UE is 
communicating with the BS through an activated RUE, the 
spectral efficiency SR is limited by the link with the poorest 
conditions between both the BS-RUE and RUE-UE links.  

SR= min�Smax, log
2
�1+ min�SINRBS-RUE,SINRRUE-UE��� (2) 

where SINRBS-RUE and SINRRUE-UE, denote the SINR in the BS-
RUE and RUE-UE links, respectively. A UE is considered in 
outage when its spectral efficiency falls below a specified 
minimum threshold (Smin). Only in that case (SD<Smin) the UE 
will attempt to connect to an activated RUE. The RUEs with a 
spectral efficiency less than Smin are assumed unavailable for 
activation. 

 
Fig. 1. Architectural components of the considered approach 

 Regarding the RUE activation problem, let us consider a 
base station b. Within the coverage area of the base station, there 
are a number of  DBSCAN-detected coverage holes, numbered 
as z=1,…,Z.  To solve them, it is assumed without loss of 



generality that there is a number of  R candidate RUEs to cover 
each region. These are numbered as r=1,…,R. The r-th 
candidate RUE of the z-th region has a status mode of 
ab,z,r={0,1} where 0 means that the RUE is deactivated and 1 
means it is activated. Therefore, the global status mode 
configuration associated to BS b can be defined as the Z·R-
length vector Cb={ab,z,r}. The objective of this approach is to 
find a policy that optimally activates the RUEs, which means to 
find the optimum configuration Cb(t)={ab,z,r(t)}. It is assumed 
that these decisions are made in discrete time instants t with 
granularity ∆T s. These discrete times are denoted as t, t+1,..., 
t+k,... 

The criterion to consider a configuration Cb(t) as optimum is 
based on the so-called Uz factor. This metric indicates whether 
or not it is useful to have a RUE in active mode in a particular 
zone. It takes a value of 1 when the number of UEs with an active 
session in a z region is above a given threshold Uthd or when the 
percentage of UEs in outage being served by BS b exceeds an 
established threshold Othd. Otherwise, Uz=0. This is based on the 
assumption that the concentration of users in z regions follows a 
time pattern and is not constant throughout the day and, 
therefore, the activation of RUEs it only required at particular 
time periods of the day. Overall, the global efficiency of a given 
configuration can be computed based on the next criterion: let 
us define Nb,z(t) as the number of  RUEs designated to cover a z 
region that are in active mode given Cb(t). The  RUE activation 
efficiency of the z-th region can be obtained as follows: 

Ez�ab,z,r(t)� = � 1 if  �Nb,z�t)>0 and U	=1 

Nb,z�t)=0 and U	=0
or

0  if  �Nb,z�t)=0 and U	=1 

Nb,z�t)>0 and U	=0
or

 
 

(3) 

 The expression captures different situations. For example, 
when there is a number of users greater than Uthd in a region with 
limited coverage (Uz=1) and there are RUEs in active mode 
Nb,z(t)>0, this combination results beneficial, so the efficiency is 
1. In the same way, the function captures non-beneficial 
combinations, for instance, when there is a concentration of UEs 
in a z region fewer than Uthd, which means that Uz=0 and there 
are RUEs in active mode. The latter can represent a waste of 
resources, so the efficiency is 0. In general, (3) intends to 
measure the pertinence of relay activation given the network 
dynamics throughout the day. In view of the above, the formal 
problem to optimize is the maximization of the global efficiency, 
Geff, given a configuration Cb(t) while maintaining the system 
outage probability Oprb below a threshold Othd. It is defined as 
follows: 

Geff = 1

 Z

∑ 1

 R
∑ E(ab,z,r(t))

R
r=1

Z
z=1 �           s.t. Oprb < Othd      (4) 

III. PROPOSED SOLUTION 

The proposed solution is based on two main techniques 
which are described in the following subsections. 

A. DBSCAN algorithm 

 This  algorithm works by grouping together points in a 
dataset that are close to each other and identifying outliers as 
noise. The inputs of the algorithm consist of  two parameters, 
db_epsilon and min_samples. db_epsilon defines the radius 
around each point that should be considered as part of a cluster 

and min_samples defines the minimum number of points 
required to form a cluster. The algorithm starts by selecting an 
arbitrary point and expanding the cluster by finding all the 
neighboring points within db_epsilon distance. If there are at 
least min_samples points within this radius, a new cluster is 
formed. Otherwise, the point is marked as noise. Next, the 
algorithm proceeds to the next point and repeats the process until 
all points have been assigned to a cluster or marked as noise. 
Further details on this process can be found in [12].  

 The proposed solution consists in 4 stages (see Fig. 1). In 
first stage by making use of, for example MDT procedures [3], 
data is collected from network users such as, location, received 
signal level, channel quality indicators (CQI) that is mapped to 
spectral efficiency, signal-to-noise-ratio (SNR), etc. Then, it is 
processed this information to filter the information of users 
experiencing signal quality levels below a certain threshold and 
to adapt this data to the format required by the DBSCAN 
algorithm. The second stage consists in applying the DBSCAN 
algorithm. The result of the algorithm are clusters that contain 
the users with poor signal quality in a given geographical area, 
so each cluster represents a coverage hole. Since the area of a 
cluster can have arbitrary shapes and sizes, it is characterized by 
the coordinates of a centroid  and by an estimated radius from 
the centroid to the farthest point of the cluster. The second stage 
is executed different times (Cex) with different source data (e.g. 
measurements of different days). The third stage involves 
analyzing the data obtained in the second stage and validating 
the clusters. To validate the presence of a cluster, it is computed 
the euclidean distance between the centroids of different 
executions. Specifically, if the distance between the centroid of 
the first execution and the centroids of the other executions is 
less than rp% of the length of the radius of the first execution, 
then the cluster is considered valid. In the fourth stage, the data 
from the detected clusters is stored in a coverage holes database. 

B. DQN-based solution for RUEs activation  

Designing an effective solution to activate RUEs is a 
complex task that requires considering several variables, 
including the current status mode of RUEs, the propagation 
conditions of RUEs, the changing probability of being available 
of RUEs, users’ concentration at z regions and the traffic 
dynamics. To tackle this multidimensional challenge, this paper 
proposes the use of Deep Reinforcement Learning (DRL) as a 
means of addressing the RUE activation problem. DRL 
techniques combine deep neural networks (DNN) and 
reinforcement learning (RL) to assist a software-based agent in 
making decisions. Specifically, among DRL techniques, the 
Deep Q-Network (DQN) algorithm in [13] is selected to address 
the problem at hand.  

The proposed DQN approach allows learning the policy π 
that dynamically activates/deactivates the RUEs in a BS 
according to the varying conditions in the BS. The learning of 
this policy is a dynamic process in which the RAC controller 
containing the DQN-agent (see Fig. 1) makes decisions for the 
RUEs of the different regions. At time t the DQN-agent 
performs an action a(t) that represents a RUE configuration 
Cb(t) to be applied in the next time window of duration ∆T. The 
decision of taking a specific action depends on the current state 
observed at time t, denoted as s(t), as well as the policy π that is 
available at that particular moment. After applying the chosen 



RUE activation configuration, the DQN agent is provided with 
a reward signal, denoted as r(t+1). This signal evaluates the 
efficacy of the performed action and is consequently employed 
over the time to enhance the decision-making policy π. Below 
are presented the descriptions of the main elements of the DQN-
based solution.  

The state s(t) is a vector associated with a specific base 
station b, and consists of the components described in the 
following: 

• Seff(t)={Sb,z,r(t)|z=1,...,Z, r=1,...,R} represents the spectral 

efficiency of the RUEs in base station b, computed 

according to (1). 

•  Cb(t)={ab,z,r(t)| z=1,...,Z,r=1,...,R} denotes the configuration 

of all RUEs at time t.  

• Pb(t)={Pb,z,r(t)|z=1,...,Z,r=1,...,R} refers to probability of a 

RUE of being available at time t. 

• Nb(t)={Nb,1(t), Nb,2(t),…,Nb,Z(t)} denotes to the number of 

UEs with active session located inside of the Z regions at 

time t. 

The total number of components of the state is Z(3R+1). 

An action a(t�∈
 can be seen as a vector Cb(t)={ab,z,r(t)} 
containing the relay activation configuration applied every time 

window ∆T. The action space �  encompasses all valid 
activation configurations. Since each RUE can either be 
activated or deactivated (two modes), the total number of 
feasible actions in the action space is equal to 2Z·R. 

The reward function r(t+1) assesses the effectiveness of the 
action a(t) with respect to the optimization goal (3) for the state 
s(t). It provides a quantitative measure of the quality of the 
obtained performance, indicating whether it was favourable or 
unfavourable. The reward is defined as: 

r(t+1)= 1

 Z

∑ 1

 R
∑ E(ab,z,r(t))

�
r=1

Z
z=1 � · min(1,

Othd

Oprb

)    (5) 

 The function has two terms: the first represents the relay 
global efficiency for the applied action a(t), while the second 
acts as a penalty. The second term is only activated if the global 
outage probability Oprb exceeds the established outage threshold 
Othd. However, if Oprb=0, the second term has a fixed value of 1. 

The decision-making policy π is dynamically learned by the 
DQN agent through the rewards received from previous 
decisions. This is done by implementing the DQN algorithm 
described in [13], particularised to the state, action, and reward 
signals mentioned above. The algorithm aims to maximize the 
expected discounted cumulative reward (i.e., the Q-value) by 
using a deep neural network (DNN) denoted as Q(s, a, θ) with 

weights θ. It approximates the optimal action-value function. 
The decision-making policy selects the action with the highest 
Q-value for a given state. The policy is updated based on 
experiences gathered by the DQN agent, which selects actions 
with the highest Q-value for a given state. The agent stores 
information about the state, action, reward, and new state in an 
experience dataset, which is used to update the evaluation 
DNN’s weights. The detailed process can be found in [13]. 

IV. PERFORMANCE EVALUATION 

 This section evaluates the performance of the proposed 
solution through system-level simulations. The considered 

scenario is a 200 m x 200 m square area consisting of one 5G 
NR BS. The traffic generation of UEs assumes a Poisson session 
arrival process with average generation rate 0.6 sessions/s and 
exponentially distributed session duration with average 120s. 
The generated UEs are assumed static for the entire duration of 
its session. The key parameters of BS are shown in Table I. The 
scenario considers four candidate RUEs. 

TABLE I. BS AND RUES CONFIGURATION PARAMETERS 

Parameter Value 

Type of RAT 5G NR Relay UEs (RUEs) 

Position [x, y] m [100,100] [30,130]  [33,86]   
[151,115] [154,93]  

Frequency 26 GHz 3.5 GHz 

Channel bandwidth 100 MHz 100 MHz 

Transmitted power 21 dBm 21 dBm 

Transmitter Antenna 

gain 

26 dB 3 dB 

Height 10 m 1.5m 

UE antenna gain 10 dB 

Outage threshold 

(O ) 

5% 

UE noise figure 9 dB 

UE height 1.5m 

Path loss model 
Model of Sec 7.4 of 

[18] 
UE-to-UE propagation 

model of [19] 

A. Performance evaluation of the DBSCAN-based coverage 
hole detection 

The detection of coverage holes is carried out by collecting 
data from five days of network operation. To that end, the data 
of the sessions generated between 8:00 a.m. and 20:00 p.m. 
during these 5 days has been collected and processed in order to 
find the location of users experiencing SD<Smin where Smin=1 (see 
section III.A). The hyperparameters used for the DBSCAN 
algorithm were db_epsilon=0.3 and min_samples=35 which 
means that along a day there must be as minimum 35 UEs in 
outage with locations close to each other to be consider that area 
as a coverage hole. For the validation of clusters, the considered 
parameters are: Cex=5 and rp=0.25. Based on the described 
parameters, the CHD detected two coverage holes (Z=2) with 
centroid in coordinates [12, 99] and radius of 16 m, and with 
centroid in [172, 85] a radius of 23 m. Fig.2 depicts the map of 
spectral efficiency of the base station and the detected coverage 
holes that satisfied db_epsilon and min_samples. The model has 
been developed in Python by using the machine-learning library 
scikit-learn [16]. 

B.  Performance evaluation of the DQN-based strategy 

 In the following we assess the DQN-based RUE activation 
strategy. The positions of the four candidate RUEs are shown in 
Fig. 2b. The availability of each RUE is modeled by a 
probability that varies between 0.85 and 0.99 depending on the 
time of the day. The scenario considers the RUE activation in 
the period between 8:00 a.m. and 20:00 p.m. To model the 
space-time traffic distribution, each coverage hole z of the 
scenario has a probability 20% that the generated sessions  
appear within its area. This probability is applicable during 
certain time periods of the day according to a specific temporal 
pattern (e.g. 9:00-11:30 a.m.; 15:30-17:00 p.m., etc.). During the 
other periods the sessions are uniformly distributed in the whole 
scenario. It is worth noting that each coverage hole follows a 
different temporal pattern.  



 
Fig. 2. (a) Map of spectral efficiency; (b) DBSCAN-detected coverage holes. 

Based on the described scenario, a training process was 
conducted. Every 500 training steps, the current policy of the 
DQN agent was obtained and evaluated in a particular scenario 
with a given space-time traffic distribution. By conducting 
evaluations every 500 Training Steps under the same conditions, 
the results were comparable. The output of each evaluation was 
an average reward value. This process was repeated until 
MaxNumberOfTrainingSteps when the average reward values 
converged. The model has been developed in Python by using 
TF-agents library [17]. The DQN parameters are detailed in 
Table II. For details of the meaning of these parameters the 
reader is referred to [13]. 

TABLE II. DQN ALGORITHM PARAMETERS 

Parameter Value 

Initial collect steps 500 
MaxNumberOfTrainingSteps 200000 

Experience Replay buffer 

maximum length (l) 

100e3 

Mini-batch size (J) 64 
Time window (ΔT) 60 s 

DNN updating period (P) 500 Training Steps 

Discount factor (τ) 0.9 

Learning rate (α) 0.0001 
ɛ value (ɛ-Greedy) 0.1 

DNN architecture 

Input layer: 14 nodes 

Two hidden layers: 100 and 50 nodes 

Output layer: 16 nodes 

 

Aiming at assessing the obtained policy after the training 
process, our proposed strategy for RUE activation is evaluated 
and compared against two reference approaches denoted as All-
RUEs deactivated, which can be considered as the classical 
RAN in which no RUE capabilities are exploited, and the All-
time active strategy, which keeps one RUE active all the time for 
each z-region (except when no RUE is available). The obtained 
DQN policy along with the two reference strategies have been 
evaluated during 20 days characterized by different space-time 
traffic distributions. 

Fig. 3 shows the global efficiency of the RUE activation 
process for each day. The DQN-based activation results achieve 
higher efficiency than the reference approaches, as it activates 
or deactivates RUEs based on the network dynamics. The 
efficiency of this strategy is above 90% practically all the time. 
In fact, on average it achieves 92.5%, while the All-RUEs 
inactive and All-time active strategies achieve 42% and 43.7%, 
respectively. To assess performance in terms of outage, Table 
III reports the outage efficiency, given by the probability during 
that the global outage probability Oprb is maintained below Othd. 

It is observed that the All-time active strategy achieves the 
highest efficiency, which is expected since the RUEs are always 
active. However, the difference with the DQN strategy is only 
4.7%. In contrast, with the All-RUEs inactive strategy, the 
outage efficiency is only 44.8%, while DQN-based activation 
strategy reaches a value of 93.7% representing an improvement 
of slightly more than the double. Regarding the system outage 
probability, in Table III is shown that, the All-RUEs inactive 
strategy results in an outage probability of 6.4%, while the DQN-
based activation strategy and the All-time active strategy result 
in 1.3% and 0.4%  respectively. The use of relays leads to a 
significant reduction of 5.1% in the outage probability for UEs, 
compared to not using relays. Note how there is only a slight 
performance difference of approximately 1% between 
maintaining RUEs active all the time and conducting activation 
based on the DQN strategy.  

 
Fig. 3. Comparison of global efficiency for different activation strategies 

There is a remarkable reduction in the time that relays remain 
in active mode when using our proposed strategy in all the 
evaluated days. Fig. 4 shows that the All-time active strategy 
clearly maintains the relays in active mode for a significantly 
longer amount of time than the DQN-based activation strategy. 
In fact, All-time active strategy uses the relays for an average of 
22.7 hours per day, but this value is significantly reduced to 9.75 
hours when using DQN-based activation strategy, which implies 
a time reduction of around 57%. Overall, the proposed strategy 
achieves important reductions in the time that RUEs are active 
in all evaluated days, also representing a significant reduction in 
energy consumption. 

TABLE IIII. OUTAGE PERFORMANCE OF DIFFERENT STRATEGIES 

 

 
Fig. 4. Number of hours in active mode for different activation strategies 

An efficient activation strategy has the potential to impact 
network performance in terms of spectral efficiency. In that 
respect, Fig. 5 shows the cumulative distribution function (CDF) 
of the spectral efficiency values obtained over the 20 days of 
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evaluation. The All-time active and DQN-based activation 
strategies exhibit highly similar distributions, achieving 
minimum spectral efficiency values of 3.98 b/s/Hz and 3.88 
b/s/Hz, respectively. In contrast, the All-RUEs inactive strategy 
yields a minimum spectral efficiency value of 2.6 b/s/Hz, which 
is approximately 33% lower than the DQN-based activation 
strategy. However, the DQN-based activation strategy 
dramatically reduces the time RUEs spend in active mode. 
Specifically, our proposed strategy achieves similar 
performance to the All-time active strategy in terms of outage 
probability and average spectral efficiency, but using RUEs an 
average of 57% less time. This is a remarkable effect that 
demonstrates the importance of a proper coverage holes 
detection as well as the efficient use of relays of our strategy. 

 

Fig. 5. CDF of spectral efficiency obtained for different activation strategies 

V. CONCLUSIONS 

This paper has proposed a novel approach to detect and solve 
coverage holes in 5G networks. It is proposed a coverage hole 
detector (CHD) based on the DBSCAN clustering algorithm, 
which is able to delimit the regions experiencing lower levels of 
signal quality by analyzing users’ performance and data 
processing. Once the regions are detected, it is proposed to 
activate relay capabilities of the User Equipment (UE) to 
enhance the coverage. The relay activation stage is based on a 
Deep-Q Network (DQN) algorithm to learn from the network’s 
behavior and develop an efficient RUE activation policy through 
a training process. The proposed approach has been evaluated 
by means of system-level simulations and compared to other two 
reference solutions. Results indicate the capability of the 
proposed DBSCAN-based approach to efficiently detect the 
coverage holes, since given the detection combined with the 
relay activation strategy allowed to reduce the system outage 
probability and increasing the spectral efficiency experienced by 
network users. The DQN-based approach uses relays with an 
average efficiency of 92.57%. In comparison, when RUEs 
remain inactive all the time the efficiency is 42%, while with 
RUEs always activated it is 43.7%. This highlights the 
importance of using or not the RUEs depending on the network 
dynamics  as our solution does. In terms of maintaining the 
outage probability below an allowed system outage level, our 
approach achieves to keep it below the  93.7% of the time, 
achieving more than twice the efficiency with respect to its 
comparative approach. A remarkable result is the capability of 
our DQN-based strategy of keeping the RUEs active when it is 
efficient to do it. In that matter by using our strategy is possible 
to reduce the time in active mode of the RUEs in average 57% 
with respect to the All-time active case. This brings benefits for 
MNOs, UE holders and in terms of significant energy savings.  
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