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ABSTRACT 

 

This paper presents a computing resource management 

approach within the SDR execution environment PHAL. 

PHAL provides several features, including timing 

management and resource awareness, for an efficient 

computing resource management. Simulations show its 

capability for mapping a modular SDR application or 

waveform to the distributed computing resources in real-

time, thus, facilitating the dynamic reconfiguration of SDR 

platforms. 

 

1. INTRODUCTION 

 

A heterogeneous radio environment characterizes the 

emerging 4
th

 generation of wireless communications. SDR 

technology facilitates taking full advantage of a composite 

radio environment, where a wireless user can receive 

personalized services over any suitable air interface [1]. 

SDR is not limited to the radio access but rather applicable 

to the entire radio system. This system consists of user or 

mobile terminals, base stations and core networks. 

 Future radio systems will be flexibly (re)usable and 

mostly consist of programmable or software-reconfigurable 

processors, such as general-purpose processors (GPP’s), 

digital-signal processors (DSP’s), and field-programmable 

gate arrays (FPGA’s). An execution environment that 

features some suitable middleware is necessary to be able to 

efficiently use these heterogeneous processing platforms for 

running software-defined radio applications. 

  An SDR execution environment needs to be aware of 

the computing resources’ states of the underlying hardware 

at any time. This facilitates an efficient and real-time 

reconfiguration of the SDR platform and, thus, a dynamic 

switch from GPRS to UMTS or to any other radio standard 

of today or tomorrow without changing the radio equipment 

(Fig. 1). 

 The rest of the paper is organized as follows. Section 2 

briefly examines some related work. Section 3 presents the 

most salient features of the PHAL execution environment, 

before describing our approach to computing resource 

management in software-defined radio. Sections 5 and 6 

discuss the simulations and conclusions. 

 

Fig. 1.  Dynamic mapping of waveforms. 

  

2. RELATED WORK 

 

Execution environments as well as computing resource 

management are important topics in SDR research [2]. 

These two issues have mostly been separately addressed. 

 

2.1. SDR Execution Environments 

 

SDR execution environments include the JTRS’s software 

communications architecture (SCA) [3] and Virginia Tech’s 

OSSIE (open source SDR implementation embedded) [4], 

which is an SCA implementation targeting embedded 

systems. SCA concisely defines an architecture for the 

communication between software and hardware objects 
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based on CORBA. SCA currently assumes GPP devices; 

other processor types, such as DSPs and FPGAs, will be 

included in future releases. It relies on the underlying 

(POSIX-compliant) operating system that guarantees real-

time execution of waveforms on best-effort basis. 

 Reference [5], on the other hand, presents a non-

CORBA based software framework and several protocols 

for software and hardware configurations. PHAL (Platform 

and Hardware Abstraction Layer) [6] is another SDR 

execution environment that does not rely on CORBA but 

rather on a proprietary communications manager, which we 

describe in section 3. Other SDR execution environments 

exist, but their discussion is out of the scope of this paper. 

 

2.2. Computing Resource Management 

 

Graph partitioning and scheduling techniques for SDR 

applications have been studied in [7]. It examines the 

problem of optimally scheduling waveforms to platforms 

consisting of 2 DSPs that are connected via bus of certain 

speed. The optimization objective is the application’s 

speedup. 

 We have argued for a more general view of computing 

resource management in software-defined radio and have 

presented the corresponding framework in [8]. This 

framework features a resource modeling, which 

contemplates for different platform architectures and 

(number and types of) processing devices, and a computing 

resource management approach that allows for different 

objective or cost functions. 

 

2.3. Q-SCA 

 

Q-SCA (QoS SCA) is an SDR execution environment with 

quality of service (QoS) capabilities. It adds an admission 

controller and resource allocator to the SCA framework and 

introduces a resource modeling, which specifies the 

processing, dataflow, and latency requirements of 

waveforms [9]. Our approach is alternative to Q-SCA; [10] 

provides a recent comparative study between PHAL and 

SCA. 

 

3. PHAL EXECUTION ENVIRONMENT 

 

PHAL is an execution environment or middleware for SDR 

systems [6]. It accounts for: 

 Heterogeneous SDR platforms and applications; 

 Synchronization and time management; 

 Execution control and resource monitoring; 

 

We discuss these principal features of PHAL in 

continuation; [6] provides further details. 

 

 

 3.1. Heterogeneous SDR Platforms and Applications 

 

PHAL, in principal, can handle any processing platform and 

application. As regards the platforms, PHAL works on 

GPP’s, DSP’s, or FPGA’s. Fig. 2 indicates 3 platforms or, 

equivalently, one platform with 3 processors, where each 

platform or processor contains a processor-specific HW 

API. 

Fig. 2.  PHAL’s building blocks. 

 

 SDR applications or waveforms need to be 

programmed following a few simple programming rules: 

Software modules represent objects that contain an init 

phase, a run phase, and a stop phase. These objects 

communicate with each other using the PHAL software API 

(Fig. 2). This way any two modules that interchange data do 

so via well-defined interfaces. 

 

3.2. Synchronization and Time Management 

 

PHAL synchronizes the clocks on all devices at a certain 

and modifiable time granularity, where all devices follow a 

master clock of a chosen master device. PHAL considers 

processing time as a computing resource and manages it on 

time slot basis. Therefore, the processing time is divided 

into time slots. Each time slot executes part of the waveform 

in a pipelined fashion (Fig. 3). 

 This time management facilitates guaranteeing the real-

time execution of waveforms and greatly simplifies the 

mapping and scheduling process. More precisely, since time 

is an implicitly resource a mapping that uses 100% or less of 

any available resource for waveform processing can meet 

the timing requirements. These timing requirements are 

radio service specific and are given as minimum data-rate 

and maximum latency demands [8]. 
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Fig. 3. Time slot division and pipelining. 

 

 This rigorous time management during the execution 

phase of an application also applies to other (pre- and post-

execution) phases, where the application and its 

initialization parameters (e.g. filter coefficients) are loaded, 

variables are retrieved or updated, and so forth. This permits 

a deterministic characterization and control of the 

information latency at any time. 

 Fig. 3 indicates that PHAL requires a certain amount of 

computing resources for the time management, among 

others. This resource overhead is measured as less than 10% 

for a time-slot duration dts of 1 ms [6]. In other words, 

PHAL needs less than 100 µs per processor and 1 ms time-

slot, leaving 900 µs of each time-slot for actual waveform 

professing. 

 

3.3. Execution Control and Resource Monitoring 

 

The software objects’ structure (the init, run, and stop 

phases) permits PHAL to start, pause, step, and stop the 

execution of applications. It also provides the means for 

monitoring variables and environmental statistics in real-

time. This is suitable for debugging but also for a cognitive 

resource management: PHAL is aware of the available and 

occupied computing resources of the underlying platform at 

any time instant. 

 Since PHAL may run on heterogeneous platforms, 

which generally contain different types of processing 

devices, additional abstraction layers are necessary for 

providing useful information on the platform’s computing 

capacities and the application’s computing requirements. 

We assume that these abstraction layers exist and that they 

translate computing resources and requirements to suitable 

metrics. We have found that MOPS (million operations per 

second) is suitable for characterizing the processing 

resources and requirements, whereas Mbps (mega-bits per 

second) effectively characterizes the bandwidth resources 

and demands [8].  On the basis of this information, PHAL 

can monitor and efficiently manage the given computing 

resources. 

 

4. SDR COMPUTING RESOURCE MANAGEMENT 

 

4.1. Context, Motivation, and Objectives 

 

SDR computing resource management is important for 

mobile and fixed radio equipment. It manages the limited 

computing resources of mobile terminals and of radio 

infrastructure (base stations, core network, etc.). Single-user 

mobile terminals are very limited in processing and energy 

resources. Radio infrastructure is not so much constrained 

on these resources. On the other hand, an efficient 

management could minimize its operating cost. 

Furthermore, the computing resource management on one 

side (mobile terminals) may have implications on the 

resources of the other side (radio infrastructure) and vice 

versa. This section does not discuss all these issues but 

rather presents a simple computing resource management 

approach, motivating future research. 

 SDR computing resource management needs platform 

support, that is, an SDR execution environment that is aware 

of the platform’s occupied and available computing 

resources at any time. Timing synchronization is necessary 

for the distributed real-time execution of waveforms. PHAL 

provides these features (see section 3). The reconfiguration 

process should, finally, be transparent to the user and not 

interrupt the current service provisioning. 

 

4.2. Resource Modeling 

 

 In [8] we have proposed a resource modeling on time-

slot basis. There we have suggested two matrices to model 

the processing powers (in million operations per time slot – 

MOPTS) and the platform’s inter-processor bandwidths (in 

mega-bits per time slot – MBPTS) and two for modeling the 

corresponding resource requirements. The units MOPTS 

and MBPTS are obtained from multiplying the, more 

general, units MOPS and Mbps by the time slot duration dts 

[in seconds per time slot]. PHAL’s function HWMAN (Fig. 

2) keeps track of these resources in real-time [10]. 

 We assume that the software modules (SDR functions) 

and their resource requirements in the above formats are 

available for each processor type. Without loss of 

generality, this paper considers a single SDR function’s 

implementation─as received over the air (OTA) form an 

application server─that can run on any processor. 

 

4.3. Mapping Algorithm and Cost Function 

 

Any algorithm that is able to correctly manage the 

computing resources, as provided by PHAL, is applicable. 

We distinguish between the algorithm and the cost function, 

which actually manages the computing resources. In order 

to allow for different computing resource management 

policies, we suggest a general-purpose algorithm 

O3

O1 O2O2O1(Processor 1)

(Internal Link)

Data T O1 to O2

O1 O2

O3 O4

(External Link)

Data T O1 to O2 Data T O1 to O2

Data T O2 to O4 Data T O2 to O4 Data T O2 to O4

(Processor 2) O5 O5 O4 O3 O5 O4

(time slot x-1) (time slot x) (time slot x+1)

O1 O2 O4 O5

O3

(stage 1) (stage 2) (stage 3) (stage 4) Objects mapped to
Processor 1 

Objects mapped to
Processor 2

PHAL daemons



Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved 

(subsection 4.3.1) and policy-specific cost functions 

(subsection 4.3.2). 

  

4.3.1. t1-mapping 

The t1-mapping is a dynamic programming approach. It 

considers one SDR function at a time, starting with f1 and 

finishing with fM. It maintains N possible mapping options 

throughout the mapping process. Therefore, fi is pre-mapped 

to each processor. For each of these mappings one of the N 

mapping paths, connecting the (i–1) processor-function 

pairs associated with functions f1 to fi–1, is chosen. After 

having processed SDR function fM, the algorithm chooses its 

mapping (processor) that is associated with the minimum 

cost. Backtracking the corresponding path form this 

processor-function combination gives the final mapping out 

of N (partially) different paths [8]. 

 

4.3.2. Cost Function 

A simple cost function instance consists of two 

superimposed terms, the cost of computation and the cost of 

communication, to manage the most important computing 

resources processing powers and inter-processor 

bandwidths. The cost of computation is defined as the 

quotient between the processing requirement of a given 

function and the remaining processing capacity of a given 

processor. The cost of communication sums the quotients 

between the bandwidth requirements and the available 

capacities on the corresponding links. Resources are 

dynamically updated for a correct computing resource 

management. Assignments that would require more 

resources of any type than available are infeasible and are 

given infinite costs [8]. 

 

5. SIMULATIONS 

 

5.1. SDR Application (Waveform) 

 

Fig. 4a shows the functional diagram and the processing 

requirements of the chip- and bit-rate processing of a UMTS 

downlink receiver. This processing chain consists of 17 

pipelining stages [8]. If we assume that the time slot 

duration is dts = 10
-3

 s, the pipelining latency becomes 17 

ms, which is reasonable. 

 The waveform’s processing requirements have been 

obtained as the number of MAC’s (multiply-accumulate 

operations) times the sampling frequency fs [in Hz], whereas 

the bandwidth demands have been assumed as 16 bits per 

sample times fs. This provides the computing requirements 

in MOPS and Mbps, which are translated to MOPTS and 

MBPTS as indicated in section 4.2. 

 This processing chain constitutes part of the waveform 

that should run on the SDR platform in its new 

configuration. We assume that the transmitter and the other 

processing layers (of the entire SDR-UMTS transceiver) are 

separately mapped and that sufficient resources are available 

for doing so. 

 

5.2. SDR Platform 

 

We consider one SDR platform of 3 processors. Fig. 4b 

shows its graphical and Fig. 4c its mathematical models. 

The platform’s total processing capacity is C = C1 + C2 + 

C3. The bandwidth capacities between each pair of 

processors, as defined in the bandwidth matrix B, map to the 

same physical link (of bandwidth B) which can be scheduled 

in a round robin fashion. A bandwidth resource update, 

however, needs an update of all B-matrix entries (except for 

those on the main diagonal that model processor-internal 

communication capacities). This way PHAL models and 

manages shared communication resources. 

 

5.3. Scenarios 

 

We consider different scenarios to simulate the fact that the 

computing resources vary from platform to platform and 

may be a function of previous configurations, those that are 

not completely substituted through partial reconfigurations. 

Therefore we assume several platform states: C takes the 

values 2.5, 2.65, …, 4 MOPTS and B the values 0.5, 0.75, 

…, 2.5 MOPTS. Since a platform may remain in different 

(processing heterogeneity) states, we simulate the following 

4 cases: 

I. C1 = C2 = C3 = C/3; 

II. C1 = 1.25 · C/3, C1 = C/3, C1 = 0.75 · C/3; 

III. C1 = 1.50 · C/3, C1 = C/3, C1 = 0.50 · C/3; 

IV. C1 = 1.75 · C/3, C1 = C/3, C1 = 0.25 · C/3. 

 

5.4. Results and Discussion 

 

Fig. 5 shows the simulation results. It indicates the feasible 

and infeasible mappings for the simulated platform 

conditions. An infeasible mapping means that the t-mapping 

algorithm is not able to find a mapping that satisfies the 

waveform’s computing resource requirements with the 

available resources. In general, such a mapping could not 

guarantee the waveform or service-dependent real-time 

constraints and is, thus, useless for the wireless user. 

Whether this infeasibility is the algorithm’s failure or due to 

the lack of resources is out of the scope here. 

 It is interesting to observe that the higher the 

heterogeneity in the processing capacities, the less 

bandwidth resources are necessary to obtain a feasible 

mapping. This is so because the higher the processing power 

of one processor, the more SDR functions can be finally 

executed on it, requiring less inter-processor data transfers 

and, thus, less bandwidth. (For the theoretical case that one 

processor could execute the entire SDR application, no 

bandwidth resources would be necessary.) 
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 The execution time of the t1-mapping algorithm is 

around 50 µs on a 2.4 GHz general-purpose processor. 

Hence, the mapping can be computed during a single time 

slot (of 1 ms), adding only negligible overhead to the less 

than 100 µs per time slot (see section 3.2). This verifies the 

suitability of the mapping approach for a dynamic mapping 

of waveforms within the PHAL execution environment.

  The algorithm’s short execution time makes it also 

possible to pre-compute a mapping on the basis of the real-

time resource information to decide whether or not to 

download a certain waveform to a given SDR platform or, 

which waveform to download in case of multiple options. 

This could, on the other hand, be part of the learning process 

of a cognitive engine. Both, PHAL and our computing 

resource management framework are apt for cognitive 

radios, providing a cognitive execution environment [10] for 

a cognitive computing resource management [11]. 

 

6. CONCLUSIONS 

 

This paper discusses the dynamic mapping of waveforms 

within the PHAL execution environment. PHAL is an SDR 

framework that is capable of performing computing 

resources management of heterogeneous computing 

resources. Therefore it facilitates the information of the 

momentary required and available computing resources of 

waveforms and platforms in real-time. We have presented 

the viability of one computing resource management 

approach; others are possible. 

 Finally we have indicated the suitability of PHAL’s 

computing resource management for cognitive radios. 

Cognitive radio mainly focuses on spectrum management. 

Nevertheless, spectrum efficiency─in terms of bits per 

Hertz─is mainly achieved at the expense of additional 

computing cycles. These cycles are limited and, thus, need 

to be properly managed as well. 
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Fig. 4.  Chip and bit-rate processing of SDR-UMTS Receiver [8] (a); SDR platform graphical (b) and mathematical (c) models. 
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Fig. 5.  Mapping results for processing heterogeneities I (a), II (b), III (c), and IV (d). 
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