
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

DYNAMIC MAPPING OF WAVEFORMS WITHIN THE PHAL EXECUTION

ENVIRONMENT

Vuk Marojevic (Dept. Signal Theory and Communications, Universitat Politècnica de

Catalunya, Barcelona, Spain; marojevic@tsc.upc.edu); Ismael Gomez (Dept. Signal

Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain;

ismagom@gmail.com); José Salazar (Dept. Signal Theory and Communications,

Universitat Politècnica de Catalunya, Barcelona, Spain; jose.salazar@tsc.upc.edu); and

Antoni Gelonch (Dept. Signal Theory and Communications, Universitat Politècnica de

Catalunya, Barcelona, Spain; antoni@tsc.upc.edu)

ABSTRACT

This paper presents a computing resource management

approach within the SDR execution environment PHAL.

PHAL provides several features, including timing

management and resource awareness, for an efficient

computing resource management. Simulations show its

capability for mapping a modular SDR application or

waveform to the distributed computing resources in real-

time, thus, facilitating the dynamic reconfiguration of SDR

platforms.

1. INTRODUCTION

A heterogeneous radio environment characterizes the

emerging 4
th

 generation of wireless communications. SDR

technology facilitates taking full advantage of a composite

radio environment, where a wireless user can receive

personalized services over any suitable air interface [1].

SDR is not limited to the radio access but rather applicable

to the entire radio system. This system consists of user or

mobile terminals, base stations and core networks.

 Future radio systems will be flexibly (re)usable and

mostly consist of programmable or software-reconfigurable

processors, such as general-purpose processors (GPP’s),

digital-signal processors (DSP’s), and field-programmable

gate arrays (FPGA’s). An execution environment that

features some suitable middleware is necessary to be able to

efficiently use these heterogeneous processing platforms for

running software-defined radio applications.

 An SDR execution environment needs to be aware of

the computing resources’ states of the underlying hardware

at any time. This facilitates an efficient and real-time

reconfiguration of the SDR platform and, thus, a dynamic

switch from GPRS to UMTS or to any other radio standard

of today or tomorrow without changing the radio equipment

(Fig. 1).

 The rest of the paper is organized as follows. Section 2

briefly examines some related work. Section 3 presents the

most salient features of the PHAL execution environment,

before describing our approach to computing resource

management in software-defined radio. Sections 5 and 6

discuss the simulations and conclusions.

Fig. 1. Dynamic mapping of waveforms.

2. RELATED WORK

Execution environments as well as computing resource

management are important topics in SDR research [2].

These two issues have mostly been separately addressed.

2.1. SDR Execution Environments

SDR execution environments include the JTRS’s software

communications architecture (SCA) [3] and Virginia Tech’s

OSSIE (open source SDR implementation embedded) [4],

which is an SCA implementation targeting embedded

systems. SCA concisely defines an architecture for the

communication between software and hardware objects

UMTS

?GPRS

SDR Application 1
(Waveform 1)

SDR Application 2
(Waveform 2)

SDR Application N
(Waveform N)

FPGA

DSP

DSP

FPGA

μProc

FPGA

FPGA

DSP

SDR Execution Environment

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

based on CORBA. SCA currently assumes GPP devices;

other processor types, such as DSPs and FPGAs, will be

included in future releases. It relies on the underlying

(POSIX-compliant) operating system that guarantees real-

time execution of waveforms on best-effort basis.

 Reference [5], on the other hand, presents a non-

CORBA based software framework and several protocols

for software and hardware configurations. PHAL (Platform

and Hardware Abstraction Layer) [6] is another SDR

execution environment that does not rely on CORBA but

rather on a proprietary communications manager, which we

describe in section 3. Other SDR execution environments

exist, but their discussion is out of the scope of this paper.

2.2. Computing Resource Management

Graph partitioning and scheduling techniques for SDR

applications have been studied in [7]. It examines the

problem of optimally scheduling waveforms to platforms

consisting of 2 DSPs that are connected via bus of certain

speed. The optimization objective is the application’s

speedup.

 We have argued for a more general view of computing

resource management in software-defined radio and have

presented the corresponding framework in [8]. This

framework features a resource modeling, which

contemplates for different platform architectures and

(number and types of) processing devices, and a computing

resource management approach that allows for different

objective or cost functions.

2.3. Q-SCA

Q-SCA (QoS SCA) is an SDR execution environment with

quality of service (QoS) capabilities. It adds an admission

controller and resource allocator to the SCA framework and

introduces a resource modeling, which specifies the

processing, dataflow, and latency requirements of

waveforms [9]. Our approach is alternative to Q-SCA; [10]

provides a recent comparative study between PHAL and

SCA.

3. PHAL EXECUTION ENVIRONMENT

PHAL is an execution environment or middleware for SDR

systems [6]. It accounts for:

 Heterogeneous SDR platforms and applications;

 Synchronization and time management;

 Execution control and resource monitoring;

We discuss these principal features of PHAL in

continuation; [6] provides further details.

 3.1. Heterogeneous SDR Platforms and Applications

PHAL, in principal, can handle any processing platform and

application. As regards the platforms, PHAL works on

GPP’s, DSP’s, or FPGA’s. Fig. 2 indicates 3 platforms or,

equivalently, one platform with 3 processors, where each

platform or processor contains a processor-specific HW

API.

Fig. 2. PHAL’s building blocks.

 SDR applications or waveforms need to be

programmed following a few simple programming rules:

Software modules represent objects that contain an init

phase, a run phase, and a stop phase. These objects

communicate with each other using the PHAL software API

(Fig. 2). This way any two modules that interchange data do

so via well-defined interfaces.

3.2. Synchronization and Time Management

PHAL synchronizes the clocks on all devices at a certain

and modifiable time granularity, where all devices follow a

master clock of a chosen master device. PHAL considers

processing time as a computing resource and manages it on

time slot basis. Therefore, the processing time is divided

into time slots. Each time slot executes part of the waveform

in a pipelined fashion (Fig. 3).

 This time management facilitates guaranteeing the real-

time execution of waveforms and greatly simplifies the

mapping and scheduling process. More precisely, since time

is an implicitly resource a mapping that uses 100% or less of

any available resource for waveform processing can meet

the timing requirements. These timing requirements are

radio service specific and are given as minimum data-rate

and maximum latency demands [8].

Algorithm
kernel

Object 1 Object 2

Object 3

Object 4 Object 5

Monitoring and control plane

Execution plane

Application

Abstraction LayerMiddleware

API

Platform
Software

Layer

Hardware
Layer

HW API HW API HW API

Stats
Exec ctrl

Sync...

HWMAN
Stats

Exec ctrl
Sync...

Stats
Exec ctrl

Sync...

Physical Interfaces

Platform 1 Platform 2 Platform 3

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Fig. 3. Time slot division and pipelining.

 This rigorous time management during the execution

phase of an application also applies to other (pre- and post-

execution) phases, where the application and its

initialization parameters (e.g. filter coefficients) are loaded,

variables are retrieved or updated, and so forth. This permits

a deterministic characterization and control of the

information latency at any time.

 Fig. 3 indicates that PHAL requires a certain amount of

computing resources for the time management, among

others. This resource overhead is measured as less than 10%

for a time-slot duration dts of 1 ms [6]. In other words,

PHAL needs less than 100 µs per processor and 1 ms time-

slot, leaving 900 µs of each time-slot for actual waveform

professing.

3.3. Execution Control and Resource Monitoring

The software objects’ structure (the init, run, and stop

phases) permits PHAL to start, pause, step, and stop the

execution of applications. It also provides the means for

monitoring variables and environmental statistics in real-

time. This is suitable for debugging but also for a cognitive

resource management: PHAL is aware of the available and

occupied computing resources of the underlying platform at

any time instant.

 Since PHAL may run on heterogeneous platforms,

which generally contain different types of processing

devices, additional abstraction layers are necessary for

providing useful information on the platform’s computing

capacities and the application’s computing requirements.

We assume that these abstraction layers exist and that they

translate computing resources and requirements to suitable

metrics. We have found that MOPS (million operations per

second) is suitable for characterizing the processing

resources and requirements, whereas Mbps (mega-bits per

second) effectively characterizes the bandwidth resources

and demands [8]. On the basis of this information, PHAL

can monitor and efficiently manage the given computing

resources.

4. SDR COMPUTING RESOURCE MANAGEMENT

4.1. Context, Motivation, and Objectives

SDR computing resource management is important for

mobile and fixed radio equipment. It manages the limited

computing resources of mobile terminals and of radio

infrastructure (base stations, core network, etc.). Single-user

mobile terminals are very limited in processing and energy

resources. Radio infrastructure is not so much constrained

on these resources. On the other hand, an efficient

management could minimize its operating cost.

Furthermore, the computing resource management on one

side (mobile terminals) may have implications on the

resources of the other side (radio infrastructure) and vice

versa. This section does not discuss all these issues but

rather presents a simple computing resource management

approach, motivating future research.

 SDR computing resource management needs platform

support, that is, an SDR execution environment that is aware

of the platform’s occupied and available computing

resources at any time. Timing synchronization is necessary

for the distributed real-time execution of waveforms. PHAL

provides these features (see section 3). The reconfiguration

process should, finally, be transparent to the user and not

interrupt the current service provisioning.

4.2. Resource Modeling

 In [8] we have proposed a resource modeling on time-

slot basis. There we have suggested two matrices to model

the processing powers (in million operations per time slot –

MOPTS) and the platform’s inter-processor bandwidths (in

mega-bits per time slot – MBPTS) and two for modeling the

corresponding resource requirements. The units MOPTS

and MBPTS are obtained from multiplying the, more

general, units MOPS and Mbps by the time slot duration dts

[in seconds per time slot]. PHAL’s function HWMAN (Fig.

2) keeps track of these resources in real-time [10].

 We assume that the software modules (SDR functions)

and their resource requirements in the above formats are

available for each processor type. Without loss of

generality, this paper considers a single SDR function’s

implementation─as received over the air (OTA) form an

application server─that can run on any processor.

4.3. Mapping Algorithm and Cost Function

Any algorithm that is able to correctly manage the

computing resources, as provided by PHAL, is applicable.

We distinguish between the algorithm and the cost function,

which actually manages the computing resources. In order

to allow for different computing resource management

policies, we suggest a general-purpose algorithm

O3

O1 O2O2O1(Processor 1)

(Internal Link)

Data T O1 to O2

O1 O2

O3 O4

(External Link)

Data T O1 to O2 Data T O1 to O2

Data T O2 to O4 Data T O2 to O4 Data T O2 to O4

(Processor 2) O5 O5 O4 O3 O5 O4

(time slot x-1) (time slot x) (time slot x+1)

O1 O2 O4 O5

O3

(stage 1) (stage 2) (stage 3) (stage 4) Objects mapped to
Processor 1

Objects mapped to
Processor 2

PHAL daemons

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

(subsection 4.3.1) and policy-specific cost functions

(subsection 4.3.2).

4.3.1. t1-mapping

The t1-mapping is a dynamic programming approach. It

considers one SDR function at a time, starting with f1 and

finishing with fM. It maintains N possible mapping options

throughout the mapping process. Therefore, fi is pre-mapped

to each processor. For each of these mappings one of the N

mapping paths, connecting the (i–1) processor-function

pairs associated with functions f1 to fi–1, is chosen. After

having processed SDR function fM, the algorithm chooses its

mapping (processor) that is associated with the minimum

cost. Backtracking the corresponding path form this

processor-function combination gives the final mapping out

of N (partially) different paths [8].

4.3.2. Cost Function

A simple cost function instance consists of two

superimposed terms, the cost of computation and the cost of

communication, to manage the most important computing

resources processing powers and inter-processor

bandwidths. The cost of computation is defined as the

quotient between the processing requirement of a given

function and the remaining processing capacity of a given

processor. The cost of communication sums the quotients

between the bandwidth requirements and the available

capacities on the corresponding links. Resources are

dynamically updated for a correct computing resource

management. Assignments that would require more

resources of any type than available are infeasible and are

given infinite costs [8].

5. SIMULATIONS

5.1. SDR Application (Waveform)

Fig. 4a shows the functional diagram and the processing

requirements of the chip- and bit-rate processing of a UMTS

downlink receiver. This processing chain consists of 17

pipelining stages [8]. If we assume that the time slot

duration is dts = 10
-3

 s, the pipelining latency becomes 17

ms, which is reasonable.

 The waveform’s processing requirements have been

obtained as the number of MAC’s (multiply-accumulate

operations) times the sampling frequency fs [in Hz], whereas

the bandwidth demands have been assumed as 16 bits per

sample times fs. This provides the computing requirements

in MOPS and Mbps, which are translated to MOPTS and

MBPTS as indicated in section 4.2.

 This processing chain constitutes part of the waveform

that should run on the SDR platform in its new

configuration. We assume that the transmitter and the other

processing layers (of the entire SDR-UMTS transceiver) are

separately mapped and that sufficient resources are available

for doing so.

5.2. SDR Platform

We consider one SDR platform of 3 processors. Fig. 4b

shows its graphical and Fig. 4c its mathematical models.

The platform’s total processing capacity is C = C1 + C2 +

C3. The bandwidth capacities between each pair of

processors, as defined in the bandwidth matrix B, map to the

same physical link (of bandwidth B) which can be scheduled

in a round robin fashion. A bandwidth resource update,

however, needs an update of all B-matrix entries (except for

those on the main diagonal that model processor-internal

communication capacities). This way PHAL models and

manages shared communication resources.

5.3. Scenarios

We consider different scenarios to simulate the fact that the

computing resources vary from platform to platform and

may be a function of previous configurations, those that are

not completely substituted through partial reconfigurations.

Therefore we assume several platform states: C takes the

values 2.5, 2.65, …, 4 MOPTS and B the values 0.5, 0.75,

…, 2.5 MOPTS. Since a platform may remain in different

(processing heterogeneity) states, we simulate the following

4 cases:

I. C1 = C2 = C3 = C/3;

II. C1 = 1.25 · C/3, C1 = C/3, C1 = 0.75 · C/3;

III. C1 = 1.50 · C/3, C1 = C/3, C1 = 0.50 · C/3;

IV. C1 = 1.75 · C/3, C1 = C/3, C1 = 0.25 · C/3.

5.4. Results and Discussion

Fig. 5 shows the simulation results. It indicates the feasible

and infeasible mappings for the simulated platform

conditions. An infeasible mapping means that the t-mapping

algorithm is not able to find a mapping that satisfies the

waveform’s computing resource requirements with the

available resources. In general, such a mapping could not

guarantee the waveform or service-dependent real-time

constraints and is, thus, useless for the wireless user.

Whether this infeasibility is the algorithm’s failure or due to

the lack of resources is out of the scope here.

 It is interesting to observe that the higher the

heterogeneity in the processing capacities, the less

bandwidth resources are necessary to obtain a feasible

mapping. This is so because the higher the processing power

of one processor, the more SDR functions can be finally

executed on it, requiring less inter-processor data transfers

and, thus, less bandwidth. (For the theoretical case that one

processor could execute the entire SDR application, no

bandwidth resources would be necessary.)

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

 The execution time of the t1-mapping algorithm is

around 50 µs on a 2.4 GHz general-purpose processor.

Hence, the mapping can be computed during a single time

slot (of 1 ms), adding only negligible overhead to the less

than 100 µs per time slot (see section 3.2). This verifies the

suitability of the mapping approach for a dynamic mapping

of waveforms within the PHAL execution environment.

 The algorithm’s short execution time makes it also

possible to pre-compute a mapping on the basis of the real-

time resource information to decide whether or not to

download a certain waveform to a given SDR platform or,

which waveform to download in case of multiple options.

This could, on the other hand, be part of the learning process

of a cognitive engine. Both, PHAL and our computing

resource management framework are apt for cognitive

radios, providing a cognitive execution environment [10] for

a cognitive computing resource management [11].

6. CONCLUSIONS

This paper discusses the dynamic mapping of waveforms

within the PHAL execution environment. PHAL is an SDR

framework that is capable of performing computing

resources management of heterogeneous computing

resources. Therefore it facilitates the information of the

momentary required and available computing resources of

waveforms and platforms in real-time. We have presented

the viability of one computing resource management

approach; others are possible.

 Finally we have indicated the suitability of PHAL’s

computing resource management for cognitive radios.

Cognitive radio mainly focuses on spectrum management.

Nevertheless, spectrum efficiency─in terms of bits per

Hertz─is mainly achieved at the expense of additional

computing cycles. These cycles are limited and, thus, need

to be properly managed as well.

REFERENCES

[1] J. Mitola, “The software radio architecture,” IEEE Commun.

Mag., vol. 33, no. 5, pp. 26–38, May 1995.
[2] SDR Forum Web Site, http://www.sdrforum.org/
[3] SCA Website, http://sca.jpeojtrs.mil/
[4] Open Source SCA Implementation Embedded (OSSIE) Web

Site, http://ossie.wireless.vt.edu/trac/wiki
[5] S.-L. Tsao, C.-C. Lin, C.-L. Chiu, H.-L. Chou, M.-C. Wang,

“Design and implementation of software framework for
software defined radio system,” Proc. IEEE 56th Vehicular
Technology Conference (VTC 2002-Fall), 24-28 Sept. 2002,
pp 2395-2399 (vol. 4).

[6] X. Revés, A. Gelonch, V. Marojevic, R. Ferrús, “Software
radios: unifying the reconfiguration process over
heterogeneous platforms,” EURASIP Journal of Applied
Signal Processing, vol. 2005, no. 16, Sept. 2005, pp. 2626–
2640.

[7] A.-R. Rhiemeier, “Modulares software defined radio,” Ph.D.
dissertation, Forschungsberichte aus dem Institut für
Nachrichtentechnik der Universität Karlsruhe (TH), Band 9,
Karlsruhe 2004.

[8] V. Marojevic, X. Revés, A. Gelonch, “A computing resource
management framework for software-defined radios,” IEEE
Trans. Comput., to be published.

[9] J. Lee, S. Kim, J. Park, “Q-SCA: Incorporating QoS support
into software communications architecture for SDR waveform
processing,” Real-Time Syst (2006), pp. 19-35, Springer
Science + Business Media, LLC 2006.

[10] I. Gomez, V. Marojevic, J. Salazar, A. Gelonch, “A
lightweight operating environment for next generation
cognitive radios,” Proc. 11th Conf. digital Systems Design
(Euromicro), 3-5 Sept. 2008, to be published.

[11] V. Marojevic, N. Vucevic, X. Revés, A. Gelonch, “Cognitive
computing resource management for a ubiquitous wireless
access”, Proc. 4th Int’l Conf. Ubiquitous Intelligence and
Computing (UIC’07), Hong Kong, July 11-13, 2007, LNCS
vol. 4611/2007, pp. 808-818, Springer Berlin / Heidelberg.

Fig. 4. Chip and bit-rate processing of SDR-UMTS Receiver [8] (a); SDR platform graphical (b) and mathematical (c) models.

(b)

(c)

C = (C1 , C2 , C3) MOPTS

BB

BB

BB

B = MBPTS

C2 C3C1

B

(a)

DDS

Sampling
Rate

Frequency
Adjust

Ray
Search

2450 MOPS492 MOPS

120 MOPS

130 MOPS

1 MOPS

Interpolator
Decimator

46 MOPS

492 MOPS 2450 MOPS

160 MOPS

4-Finger
RAKE MRC

Channel
Estimation

92 MOPS

DPCH

f = 1 KHz

fs = 61.44 MHz

4
·4

0
0
0
 M

O
P

S

M
a
x
im

u
m

 S
e
a
rc

h

Sync2

Sync1

Sync1
Sync4

Sync3

fs = 65 MHz

2nd

Deinter-
leaving

CRC

Physical
Channel

De-
Mapping

Physical
Channel
Deseg-

mentation

10 MOPS

Radio
Frame
Deseg-

mentation

62.9 MOPS

1st

Deinter-
leaving

116 MOPS

Rate
Match-

ing

141 MOPS

Turbo
De-

coding

342 MOPS

TrBk
Concat./
CodeBk
Deseg.

11.7 MOPS0.2 MOPS

0.384 Mbps 1.15 Mbps

1
0
 M

O
P

S
1
0
5
 M

O
P

S

4

Matched
Filter

3.84 MHz

1
5
.3

6
 M

O
P

S

4

Sampling
Rate

Matched
Filter

fs = 15.36 MHz fs = 3.84 MHz 7.68 Mbps

Chip Sync

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

Fig. 5. Mapping results for processing heterogeneities I (a), II (b), III (c), and IV (d).

B

C

2.5 2.8 3.1 3.4 3.7 4.0
0.5

1.0

1.5

2.0

2.5

C

B

2.5 2.8 3.1 3.4 3.7 4.0
0.5

1.0

1.5

2.0

2.5

B

C

2.5 2.8 3.1 3.4 3.7 4.0
0.5

1.0

1.5

2.0

2.5

C

B

2.5 2.8 3.1 3.4 3.7 4.0
0.5

1.0

1.5

2.0

2.5

(d)(b) (c)(a)

feasible infeasible

C/3

B

C/3C/3 0.75·C/3

B

C/31.25·C/3 0.5·C/3

B

C/31.5·C/3

feasible infeasible feasible infeasible feasible infeasible

0.25·C/3

B

C/31.75·C/3

