
P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 169–182, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Open Computing Resource Management Framework
for Real-Time Computing

Vuk Marojevic, Xavier Revés, and Antoni Gelonch

Dept. of Signal Theory and Communications, Universitat Politècnica de Catalunya,
C/ Jordi Girona 1-3, Modul D4, 08034 Barcelona, Spain

{marojevic,xavier.reves,antoni}@tsc.upc.edu

Abstract. This paper introduces an open computing resource management
framework for real-time computing systems. The framework is modular and
consists of a general computing resource modeling that facilitates a policy-
based (open) computing resource management. The computing resource model-
ing contains two resource model templates, which may be instantiated as often
as necessary to capture a platform’s computing resources and an application’s
computing requirements. The computing resource management approach fea-
tures a parametric algorithm (tw-mapping with window size w) and a generic
and parametric cost function, which implements the computing resource man-
agement policy. We present simulations using a simple instance of this cost
function to demonstrate the suitability and versatility of the framework. We
compute a metric that relates the computing resource management success to its
complexity and conclude that adjusting the cost function’s parameter is more
efficient than augmenting the tw-mapping’s window size.

Keywords: computing resource management, real-time computing, open
framework.

1 Introduction

Many applications require huge amounts of computing resources. Multimedia appli-
cations or mobile communications systems, for example, need high processing pow-
ers for real-time data processing. Moreover, applications are often personalized for a
particular user or user group, which demands more and more sophisticated services.
This includes communication services but also other types of popular services, such
as videostreaming. The solution to these computing demands is multiprocessing,
where applications are processed in parallel on arrays of processors that offer much
higher processing powers than single-processor execution environments. A single
application can, generally, be parallelized and may then be executed together with
other applications. In software-defined radio (SDR) [1], for example, a single-user
mobile terminal would normally execute only a few applications, the radio and user
applications in the most basic case, whereas a multi-user base station serves many
users at a time and thus executes many applications concurrently.

Parallel or multiprocessing is more complicated than sequential processing because
the available resources need to be shared spatially and temporally. A single processor

170 V. Marojevic, X. Revés, and A. Gelonch

executes applications sequentially, where pseudo-parallelism is achieved through
assigning processing time slots to different applications or application’s parts. Multi-
processor execution environments, on the other hand, allow for distributed computing,
enabling true parallelism. The distributed resources though require an appropriate
computing resource management. Computing resources include processing powers,
inter-processor bandwidths, memory, and energy resources; in general, all those re-
sources that are required for the execution of applications. Their time management is
necessary for a real-time execution.

This paper introduces a new approach to real-time computing resource management.
It presents a general framework that can efficiently manage the limited computing re-
sources of multiprocessor platforms while providing the necessary amount of resources
to real-time applications. The framework is not optimized for a specific objective but
rather open to different management policies. We call this an open computing resource
management framework. It is more general than our earlier proposal [2].

This framework bases itself on previous research results (section 2). It is a modular
design that consists of two principal modules: the computing system modeling (sec-
tion 3) and the computing resource management (section 4). The letter is further di-
vided into the mapping algorithm (section 4.1) and the cost function (section 4.2).
This modular design, in particular, the independence between the algorithm and its
objective (cost function), facilitates exchanging the computing resource management
policy. Numerous simulations demonstrate the versatility and suitability of the entire
framework (section 5), leading to interesting conclusions that pave the path for future
research (section 6).

2 Related Work

This work focuses on real-time computing systems. It particularly addresses real-time
capable execution environments of limited computing resources and applications with
real-time processing demands. We assume that the system’s constraints─the applica-
tions’ real-time computing requirements and the platforms’ limited computing re-
sources─have just to be met. Additional or other objectives, such as speeding up an
application (more than strictly necessary to meet the given timing constraints), are
thus irrelevant here. The framework accounts for platforms and applications with
heterogeneous computing resources and requirements (heterogeneous computing).

Related work considers almost any problem and objective in heterogeneous com-
puting. A vast amount of literature particularly addresses the mapping of real-time
applications to multiprocessor platforms and the scheduling of processes and data
flows. We consider mapping and scheduling as two complementary computing re-
source management methods and try to generalize previous efforts in heterogeneous
computing, taking advantage of their results and conclusions. Due to space limita-
tions, the following paragraphs detail only a few related contributions.

References [3] and [4] address the problem of optimally allocating periodic tasks,
which are subject to task precedence and timing constraints, to processing nodes of a
distributed real-time system. The efficient local scheduling of tasks in a real-time
multiprocessor system is the topic of [5]. If a task’s deadline cannot be met on a

 An Open Computing Resource Management Framework for Real-Time Computing 171

particular processing node, this task can be sent to another node [6]. The task model,
which is identical in both papers, accounts for worst case computation times, dead-
lines, and resource requirements; no precedence constraints are assumed.

Instead of assuming worst-case application requirements, [7] proposes to adapt the
resource allocation to face the runtime changes in the application environment. It
describes and evaluates models and mechanisms for adaptive resource allocation in
the context of embedded high performance applications with real-time constraints.
Based on the same principle, [8] presents a mathematical modeling for an adaptive
resource management in dynamic application environments. It precisely models fixed
hardware─a network of processors─and dynamic, real-time software at different
abstraction layers. It also proposes a framework for allocation algorithms, supporting
the three constraints application-host validity, minimum security level, and real-time
deadlines, while maximizing the overall utility of the system. Security is a common
issue in recent publications, such as [9] which allocates computing resources to real-
time and security-constrained parallel jobs.

A list scheduling framework for the run-time stabilization of static and dynamic
tasks with hard and soft deadlines, respectively, is described in [10]. It allows for
dynamic or static task-to-processor allocations and implements mechanisms that con-
trol the degree of resource reclaiming to increase the processor utilization and the
response time of the dynamic workload. Reference [11] tackles hard real-time stream-
ing applications in a scenario where jobs enter and leave a particular homogeneous
multiprocessor system at any time during operation. It combines global resource allo-
cation (mapping) with local resource provisioning (scheduling).

Other related contributions are [12]-[14]. Although they do not specifically address
real-time systems, they deal with particular aspects that this framework adopts. The
dynamic level scheduling (DLS) approach [12], for example, accounts for inter-
processor communication overheads. It maps precedence-constrained, communicating
tasks to heterogeneous processor architectures with limited or irregular interconnec-
tion structures. Alhusaini et. al introduce the problem of resource co-allocation, which
refers to simultaneous allocations of different types of resources that are shared
among applications, and formulates the mapping problem in the presence of co-
allocation requirements [13]. Reference [14], finally, introduces a theory for schedul-
ing directed acyclic graphs (DAGs) in internet-based computing. It applies graph
theory techniques to model precedence-constrained computing tasks and to derive
optimal schedules for different types of DAGs.

3 Computing System Modeling

This section presents a mathematical modeling of computing resources (section 3.1)
and requirements (section 3.2). It features resource model templates that can be in-
stantiated as many times as necessary to capture the relevant resources and require-
ments. We assume the availability of a middleware or hardware abstraction layer,
such as [15], that facilitates the information about hardware capacities and software
requirements in the units specified below.

172 V. Marojevic, X. Revés, and A. Gelonch

3.1 Computing Resources

Rt∈
+
 x + represents the template for modeling the computing environment. (+

symbolizes non-negative real numbers.) It is an X(t) times Y(t) matrix (X(t), Y(t)∈),

Rt =

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

t
tYtX

t
tX

t
tX

t
tY

tt

t
tY

tt

RRR

RRR

RRR

)(),(2),(1),(

)(,22221

)(,11211

L

MOMM

L

L

, (1)

where t∈1, 2, …, T denotes the resource model index and T the number of Rt in-
stances. Rt is apt for characterizing different types of computing architectures and
capturing the available computing resources, such as processing powers and inter-
processor bandwidths. It is therefore unitless.

R1 = C = [C1, C2, …, CN] MOPS (2)

models the processing powers of processors P1, P2, …, PN in million operations per

second (MOPS). It instantiates (1) with X(1) = 1, Y(1) = N, and .1
1 ii CR = Without loss

of generality, we label devices in order of decreasing processing capacities, that is, C1
≥ C2 ≥ … ≥ CN.

R2 = I =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

NNNN

N

N

III

III

III

L

MOMM

L

L

21

22221

11211

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1

1

1

21

221

112

L

MOMM

L

L

NN

N

N

II

II

II

 (3)

represents the logical interconnection model. A logical link corresponds to a directed
(unidirectional) communication line between a pair of processor. These logical links
map to physical links: A logical link between any two processors maps to a physical
link of a certain bandwidth if the two processors are actually connected; otherwise it
maps to an imaginary physical link of zero bandwidth. Mathematically, I holds the
indexes that point to the physical link bandwidths, which we model as

R3 = B = [B1, B2, B3, …, BN·[N–1]+1] = [∞, B2, B3, …, BN·[N–1]+1] MBPS. (4)

Bx, where x = I32 for instance, is the maximum bandwidth in mega-bits per second
(MBPS) that is available for the directed data transfer from the local data memory of
processor P3 to the local data memory of processor P2. B1 models the processor-
internal bandwidth capacities, assuming direct memory access (DMA) or pointer
transfers for processor-internal data flows.

Equations (3) and (4) facilitate modeling shared or bidirectional buses, mapping
the corresponding logical links to a single entry in B. Unnecessary positions in (4) are
then filled with zeros. I can be organized in such a way that B2 ≥ B3 ≥ … ≥ BN·[N–1]+1.

This section has presented three instances of (1); one captures the communication
architecture (I) and two actual computing resources (C and B). We introduce t’∈1, 2,
…, T’, which indexes the instances of (1) that are actual computing resources. Then,

 An Open Computing Resource Management Framework for Real-Time Computing 173

t’ = 1 and t’ = 2 index C and B. Modeling the actual computing resources per time
unit facilitates handling real-time applications with limited resources (section 4).

3.2 Computing Requirements

Matrix rt∈ +
 x + is the applications’ general computing model. It is, equivalently to

Rt, an x(t) times y(t) matrix (x(t), y(t)∈):

rt =

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

t
tytx

t
tx

t
tx

t
ty

tt

t
ty

tt

rrr

rrr

rrr

)(),(2),(1),(

)(,22221

)(,11211

L

MOMM

L

L

. (5)

We model an application as M processes that process and propagate data. Then we
can introduce instances of (5) that correspond to the instance (2)-(4) of (1).

r1 = c = [c1, c2, …, cM] MOPS, (6)

particularly, resumes the processing requirements of processes p1 to pM. We assume
that applications’ processing chains represent directed acyclic graphs (DAGs) [12]-
[14]; cyclic dependencies are then process-internal. DAGs can be logically numbered:
If px sends data to py, then y > x [16]. This leads to

r2 = i =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

111

11

1

2

112

21

22221

11211

L

MOMM

L

L

L

MOMM

L

L

M

M

MMMM

M

M

i

ii

iii

iii

iii

 (7)

and

r3 = b =[b1, b2, b3, …, bM·[M–1]/2+1] = [0, b2, b3, …, bM·[M–1]/2+1] MBPS. (8)

Equation (7) indicates an application’s precedence constraints and together with (8)
represents the dataflow requirements: bx, where x = i12, for instance, is the minimum
bandwidth that is necessary to transmit data from process p1 to process p2 in real time.
Unreferenced elements in b are filled with zeros. Organizing the upper diagonal of i
so that b2 ≥ b3 ≥ … ≥ bM·[M–1]/2+1 facilitates implementing certain mapping techniques.

Separating the precedence constraints from the bandwidth demands facilitates dis-
tinguishing between dependent and independent data flows. For example, if p1 sends
the same data to p3 and p4, i13 and i14 may point to the same entry in b (i13 = i14 – de-
pendent data flows), whereas if p1 sends two different data chunks, one to p3 and one
to p4, i13 and i14 should point to the different entries in b (i13 ≠ i14 – independent data
flows). This paper considers independent data flows.

The processing or bandwidth requirements can be obtained from multiplying the
number of operations or bits that need to be processed or propagated by the available
time for doing so. This correctly models applications’ real-time requirements.

174 V. Marojevic, X. Revés, and A. Gelonch

4 Computing Resource Management

4.1 The tw-Mapping

The tw-mapping was introduced in [2]. Here we summarize its principal characteris-
tics. It is a windowed dynamic programming algorithm, where w indicates the win-
dow size. It is organized through the tw-mapping diagram (Fig. 1), which contains a
trellis of N x M (row x column) t-nodes. A t-node is identified as {Pk(l), ps} and ab-
sorbs the mapping of process ps to processor Pk(l). Any t-node at step s (column s in
the tw-mapping diagram) connects to all t-nodes at step s+1. The sequence of proces-
sors [Pk(0) Pk(1) ... Pk(w)]s identifies the w-path, a path of length w, that is associated
with {Pk(1), ps}, where Pk(0) is the w-path’s origin processor at step s–1 and Pk(w) the
destination processor at step s+w–1. Table 1 contains the most important variables
and expressions that appear in the rest of the paper.

The main feature of the tw-mapping is that it is cost function independent. That is,
any cost function can, in principle, be applied. The cost function guides the mapping
process. It is responsible for managing a platform’s available computing resources
and an application’s real-time processing requirements (section 4.2).

The algorithm sequentially pre-assigns, or pre-maps, processes to processors, start-
ing with process p1 and finishing with process pM (parts I and II of the tw-mapping).
This is followed by a post processing that determines the final mapping (part III).

Table 1. Ranges and descriptions of variables and expressions

Variable or
expression

Range (Argument range) Description

N 1, 2, … number of processors
M 1, 2, … number of processes
w 1, 2, …, M–1 window size

k(l) 1, 2, …, N; (l∈0, 1, …, w)
processor index k(l) with its rela-
tive position l in the w-path

Pk(l) P1, P2, …, PN processor
s 1, 2, …, M step index (process index)
ps p1, p2, …, pM process

{Pk(l), ps}
t-node indicating the mapping of ps
to Pk(l)

[Pk(0) Pk(1) ... Pk(w)]s (s∈2, 3, …, M–w+1) w-path associated with {Pk(1), ps}
h = s + (l – 1) (l ≠ 0; s∈2, 3, …, M–w+1) step index h substitutes s + (l – 1)

[Pk(l–1) Pk(l)]h (l ≠ 0; s∈2, 3, …, M–w+1)
edge between {Pk(l–1), ph–1} and
{Pk(l), ph}

WT[Pk(l–1) Pk(l)]h (l ≠ 0; s∈2, 3, …, M–w+1) edge weight

Rt’ @{k(l), h}
remaining computing resources of
type t’ at {Pk(l), ph}

rt’ @{k(l), h}
required computing resources of
type t’ at {Pk(l), ph}

 An Open Computing Resource Management Framework for Real-Time Computing 175

(P1)

(P2)

(P3)

ps–1 ps ps+1 ps+w–2 ps+w–1

…

origin reference
decision

Fig. 1. Extract of the tw-mapping diagram for three processors (N = 3). The black edges indicate
those w-paths that are examined at t-node {P1, ps}, assuming w ≥ 3.

Part I consists of pre-mapping process p1 to all N processors and storing the pre-
mapping costs at t-nodes {P1, p1} through {PN, p1}. Costs are computed due to some
cost function.

At step s of part II (2 ≤ s ≤ M–w+1) the tw-mapping examines all Nw w-paths that
are associated with {Pk(1), ps}. These w-paths originate at a t-node at step s–1, pass
through {Pk(1), ps}, and terminate at a t-node at step s+w–1. Fig. 1 illustrates this for
Pk(1) = P1.

In case that s < M–w+1, the algorithm highlights the edge between a t-node at step
s–1 and t-node {Pk(1), ps} that corresponds to the minimum-cost w-path. The mini-
mum-cost w-path is the path that is associated with the minimum accumulated cost
due to the corresponding pre-mappings of p1, p2, …, and ps+w–1, where the w-path’s
origin t-node provides the pre-mapping information of p1 to ps–1. The algorithm then
stores the cost and the remaining resources up to t-node {Pk(1), ps} at {Pk(1), ps}. It
(simultaneously) processes all t-nodes at step s before considering those at step s+1.

If s = M–w+1, however, the entire minimum-cost w-path is highlighted. The total
cost and finally remaining resources are then stored at {Pk(1), pM–w+1}. After having
processed all N t-nodes at step M–w+1, part III of the algorithm follows.

Part III tracks the tw-mapping diagram back- and forward along the highlighted
edges, starting at the t-node at step M–w+1 that holds the minimum cost. This process
finds the complete mapping solution for the given problem and cost function.

The algorithm’s complexity depends on the cost function. Assuming that the complex-
ity of the cost function (ccf) is constant throughout the mapping process, we can write

complexity(tw-mapping) .
1

1
)(2 ccf

N

N
NwM

w

⋅
−
−⋅⋅−≈ (9)

Considering that M >> w and ccf = 1, the order of magnitude becomes

complexity-order(tw-mapping) = O(M · N w+1). (10)

This indicates that the algorithm is not computing efficient for large N. We therefore
suggest to cluster (huge) arrays of processors, which will eventually execute many
applications, and to apply the tw-mapping on each cluster.

176 V. Marojevic, X. Revés, and A. Gelonch

4.2 Cost Function

This section proposes a generic cost function that manages the available comput-
ing resources based on our modeling concept. We define it through the edge
weight:

WT[Pk(l–1) Pk(l)]h = ,
'

1'

}),(@{
''∑

=
⋅

T

t

hlk
tt costq (11a)

where

⎪
⎩

⎪
⎨

⎧

∞

∀≤= ∑

 otherwise ,

,1 if,
}),(@{ '

''

}),(@{ '

,
}),(@{ '

''

}),(@{ '

}),(@{
'

ji
R

r

R

r

cost hlkt
ji

hlkt
ij

ji
hlkt

ji

hlkt
ij

hlk
t . (11b)

[Pk(l–1) Pk(l)]h represents any edge in the tw-mapping diagram; it is for w > 1 part of a
w-path. Each summand in (11a) stands for the weighted cost for the allocations of
resource type t’ at t-node {Pk(l), ph}. Equation (11b) defines this cost as the sum of

ratios between the required resources ('t
ijr) and the correspondingly remaining ones

('
''

t
jiR) at {Pk(l), ph}. This implies a dynamic resource update.

Each ratio between a resource requirement and its availability is either less, equal,
or greater than 1. In the latter case, it is mapped to infinity (11b). Hence, assuming qt’
≠ 0 ∀ t’, the weighted sum in (11a) returns either a finite or infinite value. A finite
edge weight indicates a feasible, an infinite an infeasible pre-mapping. This permits
identifying and discarding infeasible solutions, which cannot meet the system’s real-
time computing constraints.

Cost function (11) defines the computing resource management policy through pa-
rameter q, where q = [q1, q2, …, qT’] weights the cost terms. The higher qt’ the higher
the relative importance of resource type t’. The sum of all weights can be normalized
to 1. Then, q1 = q2 = … = qT’ = 1/T’ would mean equally weighted cost terms.

4.3 Scheduling

On the basis of a feasible mapping─a mapping of finite cost─N processor-local
schedulers need to schedule processes, data transfers, and possibly other resource
allocations to guarantee that real-time constraints will finally be met. Finding such
schedules is possible if we assume that processing chains can be pipelined, that data
processing and data transfers can overlap, and that partial results can be immediately
forwarded to the next process [2].

Access to any shared resource requires its temporal management or scheduling.
Each shared link, for example, requires a scheduler. Assuming the availability of data
buffers, these schedulers can use a simple policy to ensure timely data transfers:
Transfer data immediately to output data buffers. This data is sent to the correspond-
ing input buffer as soon as the bus becomes available, gaining access to the different
processors that share the bus in a round-robin fashion.

 An Open Computing Resource Management Framework for Real-Time Computing 177

5 Simulations

5.1 Simulation Setup

The following simulations serve for demonstrating the suitability and possibilities of
the framework. Due to space limitations we consider a single computing platform and
two computing resources (T’ = 2)─processing powers (t’ = 1) and inter-processor
bandwidths (t’ = 2)─based on the system model instances of section 3. Fig. 2 shows
the computing platform model. This platform may represent a stand-alone computing
cluster of three heterogeneous devices or be connected to an array of processors.

We randomly generate 100,000 DAGs, which model different applications, where

• the number of processes is M = 25,
• process pi is connected to pj with a probability of 0.2 if j > i (we allow discon-

nected subgraphs, modeling parallel chains, but connect any isolated node to its
next neighbor),

• the processing demands are uniformly distributed in [1, 2, ..., 600] MOPS, and
• the bandwidth demands are uniformly distributed in [1, 2, ..., 500] MBPS.

These parameters have been derived from a real SDR application [2]. Nevertheless,
this random DAG generation results in many different application topologies (prece-
dence constraints) and computing requirements. The mean processing requirement is
7429.8 MOPS, which is slightly less than 25·(600+1)/2 = 7512.5 MOPS, because we
discard applications which need more than the 9000 available MOPS (Fig. 2). 7429.8
MOPS correspond to 82.6 % of the platform’s total processing resources. An applica-
tion’s total bandwidth requirement is 15,069.2 MBPS in the mean, being 167.4 % of
the available inter-processor communication bandwidths.

5.2 Results I: Ordering

The tw-mapping with cost function (11) maps computing requirements to computing
resources. It does so sequentially, starting with process p1 and finishing with process
pM (section 4). Related work demonstrated the importance of the mapping or schedul-
ing order. Reference [12], for instance, assigns dynamic levels to determine the next
process to be scheduled.

The modeling of section 3.2 facilitates the reordering or relabeling of processes
through basic matrix operations. In particular, to change process pi for pj, exchange ci
and cj in (6) and switch rows and columns i and j in (7). Switching rows i and j in (7)

P2

C2

P1

C1

P3

C3

B2 C = (4000, 3000, 2000) MOPS

I =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

134

312

421

B = (∞, 3000, 3000, 3000, 0, 0, 0) MBPS

Fig. 2. Computing platform model

178 V. Marojevic, X. Revés, and A. Gelonch

changes the successors of pi for those of pj and vice versa, whereas switching columns
i and j changes the predecessors of pi for those of pj and vice versa. This maintains the
same DAG with another labeling of processes.

Here we study static reordering techniques. Dynamic reordering of the remaining
processes to be mapped will be examined in future work. We consider 3 approaches:

• no reordering (ORD-0),
• reordering by decreasing processing requirements (ORD-C), and
• reordering by decreasing bandwidth demands (ORD-B).

ORD-0 assumes the initial order based on the logical numbering, which is generally
not unique. ORD-C leads to c1 ≥ c2 ≥ … ≥ cM, whereas in case of ORD-B, the pair of
processes with the heaviest data flow demand become p1 and p2, the next highest
bandwidth requirement specifies p3 (and p4), and so forth. The flexibility of mapping
lower computing requirements to the remaining computing resources is the reason for
choosing ORD-C or ORD-B. Simulations will show which approach is more suitable
for the considered scenario.

Table 2 shows the tw-mapping results for three values of q1. We observe that ORD-
B and ORD-C outperform ORD-0. This can be explained as follows: Bandwidth re-
sources, as opposed to processing resource, can be saved if (heavily) communicating
processes are mapped to the same processor. (This is why we can map applications that
have a higher total bandwidth requirement than the platform’s total inter-processor
bandwidth capacity.) Saving bandwidths is only possible if there is a processor with
sufficient processing capacities for executing two communicating processes. If heavily
communicating processes are considered first (ORD-B), it is most probable that heavy
links can be solved processor-internally. Correspondingly, the flexibility of mapping
lower processing requirements can potentially merge heavily communicating processes
and explains the good behavior of ORD-C.

Additional simulations have shown that ORD-C is more suitable than ORD-B if
the processing resources are the bottleneck, whereas ORD-B performs better than
ORD-C if the bandwidth requirements are dominating. Here, the high processing and
bandwidth loads (section 5.1) explain the similar performances of ORD-C and ORD-
B. Since the best results are obtained for q1 = 0.7 and ORD-B (Table 2), the following
simulations apply the ORD-B algorithm before executing the tw-mapping.

Table 2. Results I

 w = 1 w = 3
 q1 ORD-0 ORD-C ORD-B ORD-0 ORD-C ORD-B
0.3 33.73 15.39 16.12 19.06 7.39 8.95
0.5 25.07 11.48 11.31 13.61 6.05 6.05
0.7 21.97 13.09 9.92 11.71 6.58 5.13

5.3 Results II: Cost Function Parameter q vs. Window Size w

Methods. First we consider a fixed q vector for all 100,000 DAGs. We examine q1 =
0.1, 0.2, …, 0.9 to obtain the optimal q in the mean (Method A). Then we propose to
choose q1 dynamically, trying different values until either a feasible mapping is found

 An Open Computing Resource Management Framework for Real-Time Computing 179

or all values have been examined. In particular, q1 is iteratively updated in the
following order: 0.5, 0.4, 0.6, 0.3, 0.7, 0.2, 0.8, 0.1, 0.9 (Method B). This is a simple
method that considers q1 at a granularity of 0.1, starting with equally weighted cost
terms and discarding single-term cost functions. The number of iterations, or mapping
intents per application, is then between 1 (for a successful mapping with q1 = 0.5) and
9 (if q1 = 0.9 is finally examined). The mean number of iterations (m-iter) is the
number of iterations averaged over the considered DAGs.

Metric. In order to compare the two methods and to formalize the significance of the
cost function parameter q versus the window size w, we introduce

metric-I = quality / complexity. (12)

This metric relates the quality of the computing resource management approach to its
computing complexity. It may be considered an efficiency indicator, because effi-
ciency indicates good results at little effort.

Here we define quality as follows: If the algorithm fails in mapping x % of the ap-
plications, its quality is 1/x. We measure the complexity in two ways, theoretically
and practically. In both cases we count the number of multiply-accumulate operations
(MACs), where 1 MAC stands for one multiplication or division followed by a sum-
mation.

The theoretical complexity for the given two-term cost function can be approxi-
mated as

theoretical-complexity
⎭
⎬
⎫

⎩
⎨
⎧ +++−⋅⋅⋅−≈ ∑

=

w

k

wk N
kwM

NNwM
1

2
2

12
)(. (13)

The different terms in (13) are:

• (M – w) is the number of steps that pertain to part II of the tw-mapping,
• N is the number of t-nodes per step, and
• {·} represents the complexity of computing the cost due to processing and

bandwidth requirements at a t-node of part II, where 2N w are the additional 2
MACs for multiplying each w-path’s cost term with q1 and q2.

Equation (13) approximates the theoretically maximum complexity. It accounts for
fully connected DAGs, dividing the bandwidth requirement of each possible link
between processes by the corresponding finite or infinite bandwidth capacity.

The theoretical complexity for method B is computed as m-iter times (13). The
practical complexity model accounts for code optimizations: The practical complexi-
ties are obtained from C-code implementations, counting each MAC that is actually
realized.

Results. Fig. 3a shows the percentage of unfeasibly mapped DAGs due to method A
as a function of q1 and w. It clearly indicates that the mapping success is a function of
the window size. We further observe that the lowest number of infeasible mappings is
achieved with q1 = 0.7 for any w. The number of infeasible allocations is two to three
times lower with q1 = 0.7 than it is with the least favorable q1, which is q1 = 0.1. This
justifies Method B’s order of examining the different q1 values. (Another order would

180 V. Marojevic, X. Revés, and A. Gelonch

0

5

10

15

20

25

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

In
fe

as
ib

le
 A

ll
o

ca
ti

o
n

s
[%

]

q1

w = 1
w = 2
w = 3
w = 4
w = 5 w

Infeasible
allocations [%] m-iter

1

2
3

4

5

3.79

2.64
1.94

1.42

0.98

1.53

1.38
1.28

1.21

1.15

(b)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

Fig. 3. Results II with method A (a) and method B (b)

(a) (b)

0,0E+00

1,1E-05

2,2E-05

3,3E-05

4,4E-05

5,5E-05

1 2 3 4 5

m
et

ric
-I

w

Method A

Method B

0,0E+00

4,0E-05

8,0E-05

1,2E-04

1,6E-04

2,0E-04

1 2 3 4 5 w

Method A

Method B

Fig. 4. metric-I for methods A and B based on theoretical (a) and practical (b) complexities

affect m-iter but not the percentage of infeasible allocations.) Fig. 3b shows the
corresponding results. We again observe that the higher w the fewer the number of
infeasible mappings. The mean number of iterations decreases correspondingly. It is
generally low because more than 87.5 % of the DAGs are successfully mapped for q1
= 0.5 (Fig. 3a), that is, after 1 iteration.

Fig. 3 shows that choosing q dynamically significantly reduces the number of in-
feasible results. This leads to the conclusion that q should be chosen on application
basis (Method B) but also reinforces its importance within cost function (11).

We compute metric-I to formally compare the two methods and to discuss the dy-
namic selection of q versus the increase of w. Fig. 4 illustrates the results as a function
of w for both, the theoretical and practical complexities. The practical complexities
and the qualities for method A are based on q = [0.7, 0.3].

We observe that metric-I based on theoretical complexity numbers (Fig. 4a) is
qualitatively equivalent to metric-I for practical complexities (Fig. 4b). We interpret
this as a validation of the theoretical and practical complexity models.

Fig. 4 shows that searching for a suitable q on application basis─even with the ba-
sic q-selection algorithm of method B─approximately doubles the proposed metric for
any w. This metric considerably decreases with w; adjusting q is thus more interesting

 An Open Computing Resource Management Framework for Real-Time Computing 181

than increasing w. In particular, if the quality of the tw-mapping results for some w
and q is insufficient, we can improve it trying other q vectors without sacrificing effi-
ciency. For example, a mapping success of 95 % is achieved with w = 1 in case of
method B (Fig. 3b), whereas method A needs at least a window size of 3 (Fig. 3a).
Relating the corresponding values of metric-I, we obtain a difference of one order of
magnitude in favor of method B (Fig. 4). On the other hand, we argue for a comple-
mentary adjustment of both parameters. For instance, to achieve less than 3 % infea-
sible allocations, apply method B with w = 2 (instead of method A with w = 5).

The above conclusions demonstrate the suitability of the two parameters w and q
but also validate metric-I. These conclusions are valid for the above simulations.
Other problems may behave differently and so may require similar simulations to
derive corresponding conclusions and appropriate parameter adjustments.

6 Conclusions

This paper has introduced a computing resource management framework for real-time
systems. It consists of a modular design, which features systematically extensible
computing system models and an open computing resource management approach.
This approach comprises the tw-mapping─a cost function independent mapping algo-
rithm─and a generic cost function, which manages the available computing resources
of any type to satisfy the applications’ real-time execution demands.

The simulations have demonstrated the suitability of the entire framework as well
as the significance of the two independent parameters w and q; the proper adjustment
of these parameters can significantly enhance the efficiency of the computing re-
source management. There is still room for improvement: A low-complex algorithm
that dynamically reorders the remaining processes to be pre-mapped or dynamic ad-
justments of parameters w and q throughout the tw-mapping process may further in-
crease metric-I. We will investigate these issues as well as simulate scenarios with
additional computing resource types, such as memory and energy.

This work is focused on real-time computing systems, where the objective is to meet
real-time execution demands with limited computing resources. We are currently exam-
ining how to adapt the framework to other types of systems and objectives.

Acknowledgments. This work was supported by the Spanish National Science Coun-
cil CYCIT under Grant TEC2006-09109, which is partially financed from the Euro-
pean Community through the FEDER program.

References

1. Mitola, J.: The software radio architecture. IEEE Commun. Mag. 33(5), 26–38 (1995)
2. Marojevic, V., Revés, X., Gelonch, A.: A computing resource management framework for

software-defined radios. In: IEEE Trans. Comput. (to be published)
3. Peng, D.-T., Shin, K.G., Abdelzaher, T.F.: Assignment and scheduling communicating pe-

riodic tasks in distributed real-time systems. IEEE Trans. Software Eng. 23(12), 745–758
(1997)

182 V. Marojevic, X. Revés, and A. Gelonch

4. Hou, C.-J., Shin, K.G.: Allocation of periodic task modules with precedence and deadline
constraints in distributed real-time systems. IEEE Trans. Comput. 46(12), 1338–1356
(1997)

5. Ramamritham, K., Stankovic, J.A., Shiah, P.-F.: Efficient scheduling algorithms for real-
time multiprocessor systems. IEEE Trans. Parallel Distrib. Syst. 1(2), 184–194 (1990)

6. Ramamritham, K., Stankovic, J.A., Zhao, W.: Distributed scheduling of tasks with dead-
lines and resource requirements. IEEE Trans. Comput. 38(8), 1110–1123 (1989)

7. Rosu, D., Schwan, K., Yalamanchili, S., Jha, R.: On adaptive resource allocation for com-
plex real-time applications. In: Proc. 18th IEEE Int’l. Real-Time Systems Symp., pp. 320–
329 (1997)

8. Ecker, K., et al.: An optimization framework for dynamic, distributed real-time systems.
In: Proc. 17th IEEE Int. Parallel and Distributed Processing Symp. (IPDPS 2003) (2003)

9. Xie, T., Qin, X.: Security-aware resource allocation for real-time parallel jobs on homoge-
neous and heterogeneous clusters. IEEE Trans. Parallel Distrib. Syst. 19(5), 682–697
(2008)

10. Krings, A.W., Azadmanesh, M.H.: Resource reclaiming in hard real-time systems with
static and dynamic workloads. In: Proc. 30th IEEE Hawaii Int’l. Conf. System Sciences
(HICSS), pp. 116–625 (1997)

11. Moreira, O., Mol, J.-D., Beckooij, M., van Meerbergen, J.: Multiprocessor resource alloca-
tion for hard-real-time streaming with a dynamic job-mix. In: Proc. 11th IEEE Real Time
Embedded Technology and Applications Symp. (RTAS 2005), pp. 332–341 (2005)

12. Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures. IEEE Trans. Parallel Distrib. Syst. 4(2), 175–187
(1993)

13. Alhusaini, A.H., Prasanna, V.K., Raghavendra, C.S.: A framework for mapping with re-
source co-allocation in heterogeneous computing systems. In: Proc. 9th Heterogeneous
Computing Workshop (HCW 2000), pp. 273–286. IEEE CS Press, Los Alamitos (2000)

14. Malewicz, G., Rosneberg, A.L., Yurkewych, M.: Toward a theory for scheduling DAGs in
internet-based computing. IEEE Trans. Comput. 55(6), 757–768 (2006)

15. Revés, X., Gelonch, A., Marojevic, V., Ferrus, R.: Software radios: unifying the reconfigu-
ration process over heterogeneous platforms. EURASIP J. Applied Signal Process-
ing 2005(16), 2626–2640 (2005)

16. Robinson, D.F., Foulds, L.R.: Digraphs: Theory and Techniques. Gordon and Breach Sci-
ence Publisher Inc. (1980)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

