
A Lightweight Operating Environment for Next Generation Cognitive
Radios

Gómez, Ismael; Marojevic, Vuk; Salazar, Jose; Gelonch, Antoni
Dept. Signal Thery and Communications, Universitat Politècnica de Catalunya

ismagom@gmail.com; {marojevic;jose.salazar;antoni}@tsc.upc.edu

Abstract

It is widely known that the SDR industry campaigns

component-based radio applications, which will enable
fast prototyping and deployment of new radio devices
and may increase manufacturing profits. Through the
JTRS program, the US Dept. of Defence proposed the
SCA specification as the standard for military commu-
nications. The SDR Forum is now reviewing these
specifications and trying to adapt them to the commer-
cial market. The significant differences between mili-
tary and commercial communications’ requirements
make this migration a hazardous task. On the other
hand, the SCA specification does not consider any
method or procedure that enables cognitive functional-
ities, which would be necessary for future cognitive
radio implementations. This paper therefore presents
an alternative approach to SCA, introducing a low-
profile operating environment for next generation
cognitive radios. We demonstrate its suitability for
present and future commercial radios.

1. Introduction

It is generally understood that a cognitive radio sys-

tem addresses spectrum management issues and related
problems [1]. Cognitive radio, however, stands for a
concept of much wider scope: it introduces intelligent
radio devices that may reconfigure themselves to in-
crease the systems’ capacities, users’ satisfactions and
operators’ profits. More precisely, the flexibility intro-
duced by software-defined radio (SDR) and a cognitive
system can improve the efficient usage of radio and
computing resources [8]. In such a scenario, the system
would observe its operational environment and learn
from its reconfiguration decisions (cognition, intelli-
gence), while taking advantage of its reconfiguration
capabilities at all system layers (SDR). This implies
automatic adaptation to the momentary communication

status and user requirements, that is, without user in-
terventions. Hence, above from features related with
the communication system itself, other aspects, such as
the underlying infrastructure, need to be taken into
account. The high dependency between the wireless
system and the hardware that supports it justifies this
direction.

The reconfiguration flexibility of SDR platforms is
a powerful tool of cognitive radio systems. These plat-
forms consist of general purpose processors (GPPs),
digital signal processors (DSPs), field-programmable
gate arrays (FPGAs), pico arrays, networks on a chip
(NoCs), multiprocessor systems-on-chip (MP-SoCs),
or a mix of them. Moreover, today’s reconfigurable
devices, including arrays of processors, offer high
computing capacities at moderate power consumptions.

Many efforts to define a software framework that is
capable to efficiently manage the adaptation of wave-
forms have been achieved in the past decades. Only a
few of these try to provide a complete development
framework, integrating development tools for FPGAs,
DSPs, and so forth, and address portability issues. The
most relevant framework is probably the software
communications architecture (SCA) proposed by the
US Dept. of Defence and adopted by the SDR Forum
and many research groups (section 1.2). The flexibility
of such kind of frameworks entails the cost of addi-
tional resources that are needed to control the recon-
figuration process. In addition, monitoring, manage-
ment, and actuating elements must be incorporated for
a cognitive resource management, further increasing
the computational requirements of the system.

1.1. Cognitive Radio System

We suggest a cognitive radio system based on SDR

and which tries to jointly optimize the different re-
sources at all system layers. Figure 1 shows how the
cognitive entity is in charge of handling every aspect
related with the complete set of resources, including

radio and computing resources. The middleware or
execution environment –a layer between the applica-
tion and the platform– features several control mecha-
nisms and provides support to the sensing and monitor-
ing entity.

Communication Services

ASICs

Radio Infrastructure

Hardware Platform

Multiprocesadores (DSPs, FPGAs, etc)

Communication
Applications

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Transport

Session

Presentation

Application

SDR Middleware/Execution Environment

AD
DA

RF
Processor

HW Sensing
Monitoring

Cognitive System

Se
ns

in
g

Mo
ni

to
rin

g

Ad
ap

tiv
e

Me
ch

an
ism

De
cis

sio
n

Le
ar

ni
ng

An
aly

sis

HW Resources
Management

Communication Services

ASICsASICs

Radio Infrastructure

Hardware Platform

Multiprocesadores (DSPs, FPGAs, etc)

Communication
Applications

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Transport

Session

Presentation

Application

SDR Middleware/Execution Environment

AD
DA

RF
Processor

AD
DA
AD
DA

RF
Processor

RF
Processor

HW Sensing
Monitoring

Cognitive System

Se
ns

in
g

Mo
ni

to
rin

g

Ad
ap

tiv
e

Me
ch

an
ism

De
cis

sio
n

Le
ar

ni
ng

An
aly

sis

De
cis

sio
n

Le
ar

ni
ng

An
aly

sis

HW Resources
Management

Figure 1. Full Cognitive Radio system view

Hence, a next generation cognitive radio system re-

quires a middleware or execution environment that can
fully access the hardware and provide the full func-
tionality to reconfigure it (a part form supporting the
proper execution of the radio application).

The need to operate in an efficient, reliable, and se-
cure mode points out several requirements to the
framework’s management and control architecture.
The following list provides some of these functional-
ities.
• Monitoring and detection of the available access

networks;
• Support of the dynamic and easy incorporation

and/or substitution of components of any protocol;
• Validation, diagnosis, and error control of the own

system;
• Control and coordination of the reconfiguration of

the components of the different equipments;
• Data interface management support;
• Well defined interactions and interfaces with exter-

nal entities, such as network entities;
• An integrated development framework.

1.2. SCA Overview

The SCA specification defines an operating envi-

ronment (OE) that will be used by JTRS radios. It also
specifies the services and interfaces that the applica-
tions must employ. The interfaces are defined by using
the Common Object Request Broker Architecture

(CORBA) Interface Definition Language (IDL),
whereas graphical representations are made using the
Unified Modelling Language (UML).

The OE consists of a Core Framework (CF), a
CORBA middleware, and a POSIX-based Operating
System (OS) (see software stack in Figure 2). The CF
describes the interfaces, their purposes and their opera-
tions. It provides an abstraction of the software and
hardware layers for software application developers.
An SCA compatible system must implement these
interfaces.

Figure 2. SCA Software Stack

The software communications architecture was in-

troduced to reduce the overall software manufacturing
costs by reducing the development time, enabling reus-
ability (from one design to another), and portability
(from one platform to another) of software pieces. This
concept was inherited from the OOP (Object Oriented
Programming), which has been enriched in the past
decades by world-wide computer programmers. Fur-
thermore, CORBA exploits and expands these con-
cepts, enabling distributed computing among heteroge-
neous environments. This means that a software com-
ponent that executes on one processor can send a mes-
sage to another component running on the same or
another processor; no difference will be appreciated
from the point of view of the component programmer.

A natural step was to translate all this general-
purpose computing knowledge and experience to the
digital signal processing world. However, different
arguments must be taken as premises in radio commu-
nications: timing considerations (real time and QoS
constraints), event synchronization with external de-
vices, minimum data transfer overhead, and also the
fact that most of signal processing engineers are used
to medium efficient level programming languages,
such as plain C.

1.3. SCA Limitations

The SCA specification does not consider methods to

allow the radio to be aware of its internal computing
resources (processing resource occupation, remaining
battery life, etc.) or the waveform’s actual status (BER,
noise power density, etc.). It is because the underlying
POSIX-RTOS does not (and will not) support those
functionalities. The SCA specification has been de-
signed to provide dynamic reconfiguration services; no
further requirements were imposed.

However, an SCA-compatible CF can be designed
where these features are available: consider a tool
interfacing, on one side, the SCA framework using an
SCA-based interface and, on the other side, functions
that facilitate gathering resource information. This
solution would be platform-dependent because the
methods used to gather hardware information are out
of the scope of the specification and are not supported
by POSIX. Thus, portability to other architectures is
not ensured.

Another issue is that SCA currently does not sup-
port any features that guarantee QoS. It is rather fo-
cused on dynamic reconfigurability [9]. Moreover, it
does not focus a CPU time (a computing resource, in
CPUs) management approach, i.e. the system can not
dynamically assign a certain amount of CPU time to
one or another process. This makes it impossible to
apply real-time oriented software mapping algorithms
(e.g. tw-Mapping [8]), which dynamically assign soft-
ware components to processing resources while satis-
fying real-time and QoS requirements.

Besides these difficulties, others have been broadly
reported, as delays suffered by the IDL interfaces [2],
large foot-print of existing commercial OE implemen-
tations [4], dynamical deployment of application com-
ponents [5], etc.

2. P-HAL-OE: An OE for Cognitive Radios

Considering the SCA limitations and the features
required by commercial cognitive radios, a lightweight
Platform-Hardware Abstraction Layer (P-HAL) has
been developed for future SDR and cognitive radio
devices [6]. The concept has been proved through
implementations over heterogeneous platforms (Linux
for GPPs, 64xx and 67xx DSPs, and a reduced version
for FPGAs [7]) and the execution of various SDR
applications.

The new version of the framework, the P-HAL-OE,
has experimented an internal architecture reorganiza-
tion (written software is still backward-compatible) in

order to ease the portability to other platforms and to
separate its functionalities into well-defined autono-
mous blocks, which can be distributed among a set of
processors and thus enable a distributed radio man-
agement, as well as other (cognitive) features.

2.1. Framework Architecture

P-HAL-OE defines a structure for interoperability

of independently developed P-HAL-OE software and
for portability of P-HAL-OE routines from one plat-
form to another. In order to achieve this, it is possible
to identify a large number of tasks that do not change
from one platform to another, whereas others are plat-
form dependent. The larger the number of functions
that are platform independent, the easier it is to port the
P-HAL-OE from one platform to another. Conversely,
the larger the platform dependent part the more diffi-
cult it is to adapt the services to a new platform as
services become more complex with increasing soft-
ware sizes. Therefore, the P-HAL-OE platform de-
pendent part will define elementary services that can
potentially be implemented with low cost and a low
software depth. Figure 3 shows a schematic view of the
different P-HAL-OE components and libraries. The
top-left level of the stack depicts the application soft-
ware (represented here by a single P-HAL-OE applica-
tion object), which only uses P-HAL-OE functions to
interact with its environment. These P-HAL-OE func-
tions are called inside the different objects in the appli-
cation and their implementation is found within the P-
HAL-OE software library, being a platform independ-
ent library. The basic operations within the software
library may require in-depth platform or hardware
management. At this level, the P-HAL hardware li-
brary needs to keep the software library isolated from
the platform. Any P-HAL hardware library uses all the
necessary platform services (OS if present) and hard-
ware and provides them to higher P-HAL layers.
Hence, the P-HAL hardware library is the platform
dependant part of P-HAL.

The top-right of Figure 3 shows a representation of
the software components (P-HAL Software Daemons)
that belong to the P-HAL-OE. They perform several
tasks to successfully run the user application or to
support a distributed management. The implementation
of these components is platform-independent and so
directly portable to other platforms (as soon as the
hardware library is available). In continuation we pro-
vide a short description of this group of Software
Daemons. (MAN is used as an acronym for MAN-
AGER.)

Figure 3. P-HAL-OE Components

• CMD MAN: Centralizes the interactions with higher

level control applications and P-HAL-OE. For ex-
ample: GUIs, algorithms, user text-commands, de-
velopment tools.

• HW MAN: Performs computing resource manage-
ment tasks, assigning software requirements to
computing resources.

• SW MAN: Manages application definition (compo-
nent connection graph) and component repositories.

• STATS MAN: Provides initialization parameters to
the application objects and captures the evolution
and modification of application variables.

• BRIDGE: Acts as a link for data transfers between
processors.

• SYNC MAST: Provides the local time reference to
remote processors.

• FRONT-END: Routes and bridges P-HAL-OE con-
trol packets among the rest of the daemons and
gathers hardware status information.

• SW LOAD: Assigns local resources for loading
software components and creates internal data inter-
faces between them.

• EXEC CTRL: Ensures that every software compo-
nent is correctly running under the given real-time
constraints.

• STATS: Captures and modifies an application’s
component variables as indicated by STATS MAN.

• SYNC: Synchronizes the local times with the remote
time reference provided by SYNC MAST.

2.2. Cognitive Functionalities

The term cognition refers to the capability of know-

ing or being aware of the (cognitive) entity’s internal

or external environment. A cognitive radio is thus a
radio that features a set of tools or procedures for de-
tecting the users’ communication needs and for provid-
ing radio (and computing) resources that are most
appropriate to satisfy these needs.

In relation with such definition, P-HAL-OE can di-
vide its cognitive functions in two groups:

Computing Resource Management: The system
needs to be aware of its internal status and architecture
at any time: plug-and-play network discovering
(plugged/un-plugged processors must be automatically
recognized at run-time), distributed processing re-
sources (time, area, power…), processor-internal pa-
rameters (power, battery, malfunctions…), and so
forth.

Application and Execution Management: This
includes the application’s variables acquisition and
their modification; realtime execution surveillance;
autonomous application and component repository
management, and application execution control.

On the other hand, all cognitive functions are exe-
cuted by Software Daemons. They are grouped in two
types depending on the “intelligence” level:

Manager Daemons: These are intelligent elements
that do not directly access environmental variables or
parameters but make decisions as a function of their
values and the predefined procedures or methods.

Sensor/Actuator Daemons: These are non-
intelligent elements that provide a direct access to
environment variables and parameters. The interaction
is bidirectional, allowing capture and modification of
values.

The top view of P-HAL-OE functionalities is illus-
trated in Figure 4. Is shows a 2D space where the verti-
cal axis represents the level of intelligence and the
horizontal axis hardware (left) to software (right)
space.

The non-intelligent entities at the bottom of Figure
4 are not allowed to horizontally communicate with
one another. The information they gather is only re-
ported to its immediate manager, which governs their
actions. This separation is very useful to clarify and
understand the functionalities of the system and their
interactions. The intelligent pieces, the managers, can
communicate with other managers; this facilitates a
common management approach. A higher intelligent
entity (user, GUIs, debugging tools, CCRM applica-
tions, etc.) serves as a centralized interaction gate to-
wards the whole framework, the CMD MAN Daemon.
Such an interaction is currently supported through text-
only commands, although, some standard API inter-
faces could be implemented (Java, Python, or C++,
among others) to enable the development of GUIs or
debugging tools.

P-HAL-OE FUNCTIONAL DIAGRAM
US

ER
SP

AC
E

SE
NS

OR
/

AC
TU

AT
OR

SP
AC

E

COGNITIVE
APPLICATION &

EXECUTION
ENVIRONMENT

COGNITIVE
COMPUTING
RESOURCE

MANAGEMENT

MA
NA

GE
ME

NT
SP

AC
E

Management
tools

Management
tools

CCRMCCRM
CMD
MAN

SYNC
MAST

SW
MAN

HW
MAN

STATS
MAN

SYNC

BRIDGE

STATSFRONT
END EXECSW

LOAD

CAPTURE

ACTION

P-HAL-OE FUNCTIONAL DIAGRAM
US

ER
SP

AC
E

SE
NS

OR
/

AC
TU

AT
OR

SP
AC

E

COGNITIVE
APPLICATION &

EXECUTION
ENVIRONMENT

COGNITIVE
COMPUTING
RESOURCE

MANAGEMENT

MA
NA

GE
ME

NT
SP

AC
E

Management
tools

Management
tools

CCRMCCRM
CMD
MAN

SYNC
MAST

SW
MAN

HW
MAN

STATS
MAN

SYNC

BRIDGE

STATSFRONT
END EXECSW

LOAD

CAPTURE

ACTION

Figure 4. P-HAL-OE Functional Block Diagram

2.3. SCA vs. P-HAL-OE: Conceptual Differ-
ences

We find the following key differences between the
SCA and the P-HAL-OE (see also Table 1):
• P-HAL Hardware Library is equivalent to SCA’s

POSIX layer. However, it has been specifically de-
signed for this purpose, providing several advan-
tages: (1) it is very simple and specified for this
context, thus introducing low footprint and minimal
overhead; (2) direct support to obtain hardware in-
formation to enabling cognitive functionalities; (3)
due to its simplicity the portability to resource-
constrained architectures, such as DSPs and FPGAs,
is easier than designing custom POSIX-compliant
support.

• P-HAL Software Daemons are equivalent to the
DomainManager, DeviceManager, ApplicationFac-
tory and FileManager entities found in any SCA
CF. Nevertheless, the separation that P-HAL real-
izes through its Software Daemons is more strict,
making future improvements, upgrades, or feature-
adding easier and more consistent.

• P-HAL-OE enables a distributed management of its
environment or, in other words, its functionalities
are non location-constrained. This means that not
every processing element must support all P-HAL-
OE functionalities; for example, DSPs or FPGAs do
not need to realize management tasks such as soft-
ware repository access or software components
mapping. These tasks should be reserved to non-
constrained processors (GPPs) if available. P-HAL-
OE eases this easily: Since functionalities are as-
signed to P-HAL software daemons, not launching
one disables the corresponding set of functionalities.
This reduces the footprint and other resources.

• Interactions between objects and with lower layers
are completed through API’s instead of using
CORBA IDL interfaces. This contributes to reduce
the overall run-time overhead in data transfers and
in control calls [2]. Moreover, thanks to the pipe-
lined architecture of the execution scheduling, data
transfer overhead can be completely eliminated (at
least in terms of time) if DMA controllers are used.

Table 1. SCA vs. P-HAL-OE Feature Comparison
Topic SCA 2.0 P-HAL-OE
Process
Scheduling
(assignation
to CPU
resources)

Undefined.
Best-effort, almost
Real-Time in some
cases (RTOS)

True Real-Time.
Processes are as-
signed a determined
amount of CPU
time (resources)

Processor
Resource
Management

None.
Any tool available
to manage process-
ing resources.

Yes, functions
available to gather
processing re-
sources information
and to manage and
assign them to
processes.

Deployment
Mapping

Static, depends on
processor family,
available devices,
etc.

Real-Time oriented.
QoS guaranteed.
Multiple constraints
possible

Dynamic
Computing
Resources
Management

Partially supported.
Application defini-
tion (XML) must be
reparsed and their
interfaces recom-
piled (IDL com-
piler)

Yes, supports run-
time data flow
reconnection and
module reconfigu-
ration.

Data Inter-
faces

CORBA IDL FIFO-like.
Packet oriented

Run-time
variables
access

Same way as data
interfaces (IDL)

Variables are exter-
nally accessed.
Information is
centralized.

Portability Very high although
requires underlying
ORB middleware
and platform-
specific POSIX
RTOS

High, requires
specific Hardware
Library implemen-
tation

Distributed
Management

Yes, in some cases.
It is sometimes
difficult to isolate
functionalities from
one platform to
another

Yes, each processor
runs just the desired
management tasks.

2.4. SCA vs. P-HAL-OE: Performance Com-
parison

After presenting key differences between both
specifications in terms of functionalities, this section

provides a performance analysis. Since GPP platform’s
overhead (e.g., using Linux) is negligible in all aspects
(time, memory, power, etc.), only the DSP (Ti C64xx)
implementation will be considered. DSP-based plat-
forms are very important for wireless communications.
Their resource limitations have obliged developers to
optimize their designs.

The SCA-based implementation OSSIE [2] is con-
sidered for this comparison, in particular its implemen-
tation on a TI6416 DSP [9]. P-HAL-OE has been im-
plemented on the same DSP. Table 2 provides the
comparison study.

Table 2. SCA vs P-HAL-OE DSP Implementation Performance
Comparison
Magnitude OSSIE P-HAL-OE
Total
framework
memory
footprint

1426 kBytes 50 kBytes

Interface
packet
delay

Variable. Average
6.9 cycles per 32-bit
word when a packet
length of 1024
words is used for
internal communica-
tions.

Deterministic and
adjustable.
Components execu-
tion is pipelined.
Delay is independ-
ent of packet size or
destination location

Framework
run-time
overhead

Unknown.
POSIX system calls
time delays are
unpredictable

Restricted to less
than 10% of total
CPU time

Besides the huge difference in the total memory

foot-print (very important in SDR environments), we
appreciate the time accuracy of P-HAL-OE. Pipelined
process scheduling and the fact that P-HAL restricts
background processing tasks to less than 10% (of the
total CPU time) provides the designer with the cer-
tainty of what his application could suffer from when
implementing his waveform in a component based
environment, instead of an ad-hoc one (without a
framework).

In addition, SCA-based radios experience from un-
predictable delays because of the presence of uncon-
strained lower software layers (CORBA middleware
and POSIX) [3]. These delays could be harmful in
certain situations, such as in TDMA-based systems
(e.g. GSM), where time slots must be filled at exact
times.

3. Conclusions

This paper presents an operating environment which
faces the challenges for next generation (cognitive)
radio communications. It is able to assure real-time
waveform requirements with limited computing re-

sources. Moreover, minimum overhead as the design
premise leads to a lightweight implementation, with
very low memory footprint and deterministic time
overhead. A comparison with SCA-based SDR frame-
works has demonstrated the main advantages of our
proposal. Finally, a component-based design, having
cognitive functionalities and tools for the management
of all system resources, will characterize P-HAL-OE as
an efficient and easily extensible operating environ-
ment for next generation cognitive radios.

4. References

[1] J. Mitola III, Cogntivie Radio: An Integrated Agent

Architecture for Software Defined Radio, PhD
Thesis, Royal Institute of Technology (KTH), May
2000

[2] OSSIE, MPRG, Wireless group at Virginia Tech,
http://ossie.wireless.vt.edu/trac

[3] J. Bertrand, J. W. Cruz, B. Majkrzak, T. Rossano,

“CORBA Delays in a Software-Defined Radio”,
IEEE Communications Magazine, Feb. 2002

[4] D. Oldham, M. Scardelleti, “JTRS/SCA and Cus-

tom/SDR Waveform Comparison”, Military Com-
munications Conference, MILCOM 2007

[5] S. Kim, J. Masse, S. Hong, “Dynamic Deployment

of Software Defined Radio Components for Mobile
Wireless Internet Applications”, Proceedings of In-
ternational Human, Society and Internet, 2003

[6] A. Gelonch, X. Reves, R. Ferrús, “P-HAL: A Mid-

dleware for SDR Applications”, 2005 Software De-
fined Radio Technical Conference and
Products Exposition (SDR’05). Orange County,
California. November 14-18, 2005.

[7] X. Reves, V. Marojevic, R. Ferrus, A. Gelonch,

“FPGA’s Middleware for Software Defined Radio
Applications”, FPL 2005.

[8] V. Marojevic, X. Reves, A. Gelonch, “Cooperative

Resource Management in Cognitive Radio”, Proc.
IEEE Int.’l Conf. Communications (ICC’07), Glas-
gow, 24-28 June 2007, pp. 5939-5944

[9] J. Lee, S. Kim, S. Hong, “Q-SCA: QoS Enabled

JTRS Software Communications Architecture for
SDR-based Wireless Handstets”, Real-Time Sys-
tems, Volume 34, Issue 1, pg. 19-35, Sept. 2006

[10] C. Aguayo, F. Portelinha, J. Reed, “Design and

Implementation of an SCA core framework for a
DSP platform”, Military Embedded Systems,
March 2007

