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Abstract 

 
It is widely known that the SDR industry campaigns 

component-based radio applications, which will enable 
fast prototyping and deployment of new radio devices 
and may increase manufacturing profits. Through the 
JTRS program, the US Dept. of Defence proposed the 
SCA specification as the standard for military commu-
nications. The SDR Forum is now reviewing these 
specifications and trying to adapt them to the commer-
cial market. The significant differences between mili-
tary and commercial communications’ requirements 
make this migration a hazardous task. On the other 
hand, the SCA specification does not consider any 
method or procedure that enables cognitive functional-
ities, which would be necessary for future cognitive 
radio implementations. This paper therefore presents 
an alternative approach to SCA, introducing a low-
profile operating environment for next generation 
cognitive radios. We demonstrate its suitability for 
present and future commercial radios. 
 
 
1. Introduction   

 
It is generally understood that a cognitive radio sys-

tem addresses spectrum management issues and related 
problems [1]. Cognitive radio, however, stands for a 
concept of much wider scope: it introduces intelligent 
radio devices that may reconfigure themselves to in-
crease the systems’ capacities, users’ satisfactions and 
operators’ profits. More precisely, the flexibility intro-
duced by software-defined radio (SDR) and a cognitive 
system can improve the efficient usage of radio and 
computing resources [8]. In such a scenario, the system 
would observe its operational environment and learn 
from its reconfiguration decisions (cognition, intelli-
gence), while taking advantage of its reconfiguration 
capabilities at all system layers (SDR). This implies 
automatic adaptation to the momentary communication 

status and user requirements, that is, without user in-
terventions. Hence, above from features related with 
the communication system itself, other aspects, such as 
the underlying infrastructure, need to be taken into 
account. The high dependency between the wireless 
system and the hardware that supports it justifies this 
direction. 

The reconfiguration flexibility of SDR platforms is 
a powerful tool of cognitive radio systems. These plat-
forms consist of general purpose processors (GPPs), 
digital signal processors (DSPs), field-programmable 
gate arrays (FPGAs), pico arrays, networks on a chip 
(NoCs), multiprocessor systems-on-chip (MP-SoCs), 
or a mix of them. Moreover, today’s reconfigurable 
devices, including arrays of processors, offer high 
computing capacities at moderate power consumptions. 

Many efforts to define a software framework that is 
capable to efficiently manage the adaptation of wave-
forms have been achieved in the past decades. Only a 
few of these try to provide a complete development 
framework, integrating development tools for FPGAs, 
DSPs, and so forth, and address portability issues. The 
most relevant framework is probably the software 
communications architecture (SCA) proposed by the 
US Dept. of Defence and adopted by the SDR Forum 
and many research groups (section 1.2).  The flexibility 
of such kind of frameworks entails the cost of addi-
tional resources that are needed to control the recon-
figuration process. In addition, monitoring, manage-
ment, and actuating elements must be incorporated for 
a cognitive resource management, further increasing 
the computational requirements of the system. 

 
1.1. Cognitive Radio System 

 
We suggest a cognitive radio system based on SDR 

and which tries to jointly optimize the different re-
sources at all system layers. Figure 1 shows how the 
cognitive entity is in charge of handling every aspect 
related with the complete set of resources, including 



radio and computing resources. The middleware or 
execution environment –a layer between the applica-
tion and the platform– features several control mecha-
nisms and provides support to the sensing and monitor-
ing entity. 
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Figure 1. Full Cognitive Radio system view  

 
Hence, a next generation cognitive radio system re-

quires a middleware or execution environment that can 
fully access the hardware and provide the full func-
tionality to reconfigure it (a part form supporting the 
proper execution of the radio application).  

The need to operate in an efficient, reliable, and se-
cure mode points out several requirements to the 
framework’s management and control architecture. 
The following list provides some of these functional-
ities. 
• Monitoring and detection of the available access 

networks; 
• Support of the dynamic and easy incorporation 

and/or substitution of components of any protocol; 
• Validation, diagnosis, and error control of the own 

system; 
• Control and coordination of the reconfiguration of 

the components of the different equipments; 
• Data interface management support; 
• Well defined interactions and interfaces with exter-

nal entities, such as network entities; 
• An integrated development framework. 
 
1.2. SCA Overview 

 
The SCA specification defines an operating envi-

ronment (OE) that will be used by JTRS radios. It also 
specifies the services and interfaces that the applica-
tions must employ. The interfaces are defined by using 
the Common Object Request Broker Architecture 

(CORBA) Interface Definition Language (IDL), 
whereas graphical representations are made using the 
Unified Modelling Language (UML). 

The OE consists of a Core Framework (CF), a 
CORBA middleware, and a POSIX-based Operating 
System (OS) (see software stack in Figure 2). The CF 
describes the interfaces, their purposes and their opera-
tions. It provides an abstraction of the software and 
hardware layers for software application developers. 
An SCA compatible system must implement these 
interfaces. 

 

 
Figure 2. SCA Software Stack 

 
The software communications architecture was in-

troduced to reduce the overall software manufacturing 
costs by reducing the development time, enabling reus-
ability (from one design to another), and portability 
(from one platform to another) of software pieces. This 
concept was inherited from the OOP (Object Oriented 
Programming), which has been enriched in the past 
decades by world-wide computer programmers. Fur-
thermore, CORBA exploits and expands these con-
cepts, enabling distributed computing among heteroge-
neous environments. This means that a software com-
ponent that executes on one processor can send a mes-
sage to another component running on the same or 
another processor; no difference will be appreciated 
from the point of view of the component programmer. 

A natural step was to translate all this general-
purpose computing knowledge and experience to the 
digital signal processing world. However, different 
arguments must be taken as premises in radio commu-
nications: timing considerations (real time and QoS 
constraints), event synchronization with external de-
vices, minimum data transfer overhead, and also the 
fact that most of signal processing engineers are used 
to medium efficient level programming languages, 
such as plain C. 

 



 
 

1.3. SCA Limitations 
 
The SCA specification does not consider methods to 

allow the radio to be aware of its internal computing 
resources (processing resource occupation, remaining 
battery life, etc.) or the waveform’s actual status (BER, 
noise power density, etc.). It is because the underlying 
POSIX-RTOS does not (and will not) support those 
functionalities. The SCA specification has been de-
signed to provide dynamic reconfiguration services; no 
further requirements were imposed. 

However, an SCA-compatible CF can be designed 
where these features are available: consider a tool 
interfacing, on one side, the SCA framework using an 
SCA-based interface and, on the other side, functions 
that facilitate gathering resource information. This 
solution would be platform-dependent because the 
methods used to gather hardware information are out 
of the scope of the specification and are not supported 
by POSIX. Thus, portability to other architectures is 
not ensured.  

Another issue is that SCA currently does not sup-
port any features that guarantee QoS.  It is rather fo-
cused on dynamic reconfigurability [9]. Moreover, it 
does not focus a CPU time (a computing resource, in 
CPUs) management approach, i.e. the system can not 
dynamically assign a certain amount of CPU time to 
one or another process. This makes it impossible to 
apply real-time oriented software mapping algorithms 
(e.g. tw-Mapping [8]), which dynamically assign soft-
ware components to processing resources while satis-
fying real-time and QoS requirements. 

Besides these difficulties, others have been broadly 
reported, as delays suffered by the IDL interfaces [2], 
large foot-print of existing commercial OE implemen-
tations [4], dynamical deployment of application com-
ponents [5], etc. 

 
2. P-HAL-OE: An OE for Cognitive Radios 
 

Considering the SCA limitations and the features 
required by commercial cognitive radios, a lightweight 
Platform-Hardware Abstraction Layer (P-HAL) has 
been developed for future SDR and cognitive radio 
devices [6]. The concept has been proved through 
implementations over heterogeneous platforms (Linux 
for GPPs, 64xx and 67xx DSPs, and a reduced version 
for FPGAs [7]) and the execution of various SDR 
applications.  

The new version of the framework, the P-HAL-OE, 
has experimented an internal architecture reorganiza-
tion (written software is still backward-compatible) in 

order to ease the portability to other platforms and to 
separate its functionalities into well-defined autono-
mous blocks, which can be distributed among a set of 
processors and thus enable a distributed radio man-
agement, as well as other (cognitive) features. 
 
2.1. Framework Architecture 

 
P-HAL-OE defines a structure for interoperability 

of independently developed P-HAL-OE software and 
for portability of P-HAL-OE routines from one plat-
form to another. In order to achieve this, it is possible 
to identify a large number of tasks that do not change 
from one platform to another, whereas others are plat-
form dependent. The larger the number of functions 
that are platform independent, the easier it is to port the 
P-HAL-OE from one platform to another. Conversely, 
the larger the platform dependent part the more diffi-
cult it is to adapt the services to a new platform as 
services become more complex with increasing soft-
ware sizes. Therefore, the P-HAL-OE platform de-
pendent part will define elementary services that can 
potentially be implemented with low cost and a low 
software depth. Figure 3 shows a schematic view of the 
different P-HAL-OE components and libraries. The 
top-left level of the stack depicts the application soft-
ware (represented here by a single P-HAL-OE applica-
tion object), which only uses P-HAL-OE functions to 
interact with its environment. These P-HAL-OE func-
tions are called inside the different objects in the appli-
cation and their implementation is found within the P-
HAL-OE software library, being a platform independ-
ent library. The basic operations within the software 
library may require in-depth platform or hardware 
management. At this level, the P-HAL hardware li-
brary needs to keep the software library isolated from 
the platform. Any P-HAL hardware library uses all the 
necessary platform services (OS if present) and hard-
ware and provides them to higher P-HAL layers. 
Hence, the P-HAL hardware library is the platform 
dependant part of P-HAL. 

The top-right of Figure 3 shows a representation of 
the software components (P-HAL Software Daemons) 
that belong to the P-HAL-OE. They perform several 
tasks to successfully run the user application or to 
support a distributed management. The implementation 
of these components is platform-independent and so 
directly portable to other platforms (as soon as the 
hardware library is available). In continuation we pro-
vide a short description of this group of Software 
Daemons. (MAN is used as an acronym for MAN-
AGER.) 



 
Figure 3. P-HAL-OE Components 

 
• CMD MAN: Centralizes the interactions with higher 

level control applications and P-HAL-OE. For ex-
ample: GUIs, algorithms, user text-commands, de-
velopment tools. 

• HW MAN: Performs computing resource manage-
ment tasks, assigning software requirements to 
computing resources. 

• SW MAN: Manages application definition (compo-
nent connection graph) and component repositories. 

• STATS MAN: Provides initialization parameters to 
the application objects and captures the evolution 
and modification of application variables. 

• BRIDGE: Acts as a link for data transfers between 
processors.  

• SYNC MAST: Provides the local time reference to 
remote processors. 

• FRONT-END: Routes and bridges P-HAL-OE con-
trol packets among the rest of the daemons and 
gathers hardware status information. 

• SW LOAD: Assigns local resources for loading 
software components and creates internal data inter-
faces between them. 

• EXEC CTRL: Ensures that every software compo-
nent is correctly running under the given real-time 
constraints. 

• STATS: Captures and modifies an application’s 
component variables as indicated by STATS MAN. 

• SYNC: Synchronizes the local times with the remote 
time reference provided by SYNC MAST. 

 
2.2. Cognitive Functionalities 

 
The term cognition refers to the capability of know-

ing or being aware of the (cognitive) entity’s internal 

or external environment. A cognitive radio is thus a 
radio that features a set of tools or procedures for de-
tecting the users’ communication needs and for provid-
ing radio (and computing) resources that are most 
appropriate to satisfy these needs. 

In relation with such definition, P-HAL-OE can di-
vide its cognitive functions in two groups: 

Computing Resource Management: The system 
needs to be aware of its internal status and architecture 
at any time: plug-and-play network discovering 
(plugged/un-plugged processors must be automatically 
recognized at run-time), distributed processing re-
sources (time, area, power…), processor-internal pa-
rameters (power, battery, malfunctions…), and so 
forth. 

Application and Execution Management: This 
includes the application’s variables acquisition and 
their modification; realtime execution surveillance; 
autonomous application and component repository 
management, and application execution control. 

On the other hand, all cognitive functions are exe-
cuted by Software Daemons. They are grouped in two 
types depending on the “intelligence” level: 

Manager Daemons: These are intelligent elements 
that do not directly access environmental variables or 
parameters but make decisions as a function of their 
values and the predefined procedures or methods.  

Sensor/Actuator Daemons: These are non-
intelligent elements that provide a direct access to 
environment variables and parameters. The interaction 
is bidirectional, allowing capture and modification of 
values. 

The top view of P-HAL-OE functionalities is illus-
trated in Figure 4. Is shows a 2D space where the verti-
cal axis represents the level of intelligence and the 
horizontal axis hardware (left) to software (right) 
space. 

The non-intelligent entities at the bottom of Figure 
4 are not allowed to horizontally communicate with 
one another. The information they gather is only re-
ported to its immediate manager, which governs their 
actions. This separation is very useful to clarify and 
understand the functionalities of the system and their 
interactions. The intelligent pieces, the managers, can 
communicate with other managers; this facilitates a 
common management approach. A higher intelligent 
entity (user, GUIs, debugging tools, CCRM applica-
tions, etc.) serves as a centralized interaction gate to-
wards the whole framework, the CMD MAN Daemon. 
Such an interaction is currently supported through text-
only commands, although, some standard API inter-
faces could be implemented (Java, Python, or C++, 
among others) to enable the development of GUIs or 
debugging tools. 
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Figure 4. P-HAL-OE Functional Block Diagram 

 
2.3. SCA vs. P-HAL-OE: Conceptual Differ-
ences 
 

We find the following key differences between the 
SCA and the P-HAL-OE (see also Table 1): 
• P-HAL Hardware Library is equivalent to SCA’s 

POSIX layer. However, it has been specifically de-
signed for this purpose, providing several advan-
tages: (1) it is very simple and specified for this 
context, thus introducing low footprint and minimal 
overhead; (2) direct support to obtain hardware in-
formation to enabling cognitive functionalities; (3) 
due to its simplicity the portability to resource-
constrained architectures, such as DSPs and FPGAs, 
is easier than designing custom POSIX-compliant 
support. 

• P-HAL Software Daemons are equivalent to the 
DomainManager, DeviceManager, ApplicationFac-
tory and FileManager entities found in any SCA 
CF. Nevertheless, the separation that P-HAL real-
izes through its Software Daemons is more strict, 
making future improvements, upgrades, or feature-
adding easier and more consistent.  

• P-HAL-OE enables a distributed management of its 
environment or, in other words, its functionalities 
are non location-constrained. This means that not 
every processing element must support all P-HAL-
OE functionalities; for example, DSPs or FPGAs do 
not need to realize management tasks such as soft-
ware repository access or software components 
mapping. These tasks should be reserved to non-
constrained processors (GPPs) if available. P-HAL-
OE eases this easily: Since functionalities are as-
signed to P-HAL software daemons, not launching 
one disables the corresponding set of functionalities. 
This reduces the footprint and other resources.  

• Interactions between objects and with lower layers 
are completed through API’s instead of using 
CORBA IDL interfaces. This contributes to reduce 
the overall run-time overhead in data transfers and 
in control calls [2]. Moreover, thanks to the pipe-
lined architecture of the execution scheduling, data 
transfer overhead can be completely eliminated (at 
least in terms of time) if DMA controllers are used.  
 

Table 1. SCA vs. P-HAL-OE Feature Comparison 
Topic SCA 2.0 P-HAL-OE 
Process 
Scheduling 
(assignation 
to CPU 
resources) 

Undefined.  
Best-effort, almost 
Real-Time in some 
cases (RTOS) 

True Real-Time. 
Processes are as-
signed a determined 
amount of CPU 
time (resources) 

Processor 
Resource 
Management 

None.  
Any tool available 
to manage process-
ing resources.  

Yes, functions 
available to gather 
processing re-
sources information 
and to manage and 
assign them to 
processes. 

Deployment 
Mapping 

Static, depends on 
processor  family, 
available devices, 
etc. 

Real-Time oriented. 
QoS guaranteed. 
Multiple constraints 
possible 

Dynamic 
Computing 
Resources 
Management 

Partially supported. 
Application defini-
tion (XML) must be 
reparsed and their 
interfaces recom-
piled (IDL com-
piler) 

Yes, supports run-
time data flow 
reconnection and 
module reconfigu-
ration. 

Data Inter-
faces 

CORBA IDL FIFO-like.  
Packet oriented 

Run-time 
variables 
access 

Same way as data 
interfaces (IDL) 

Variables are exter-
nally accessed. 
Information is 
centralized. 

Portability Very high although 
requires underlying 
ORB middleware 
and platform-
specific POSIX 
RTOS 

High, requires 
specific Hardware 
Library implemen-
tation 

Distributed 
Management 

Yes, in some cases. 
It is sometimes 
difficult to isolate 
functionalities from 
one platform to 
another 

Yes, each processor 
runs just the desired 
management tasks. 
 

 
2.4. SCA vs. P-HAL-OE: Performance Com-
parison 
 

After presenting key differences between both 
specifications in terms of functionalities, this section 



provides a performance analysis. Since GPP platform’s 
overhead (e.g., using Linux) is negligible in all aspects 
(time, memory, power, etc.), only the DSP (Ti C64xx) 
implementation will be considered. DSP-based plat-
forms are very important for wireless communications. 
Their resource limitations have obliged developers to 
optimize their designs.  

The SCA-based implementation OSSIE [2] is con-
sidered for this comparison, in particular its implemen-
tation on a TI6416 DSP [9]. P-HAL-OE has been im-
plemented on the same DSP. Table 2 provides the 
comparison study.  

 
Table 2. SCA vs P-HAL-OE DSP Implementation Performance 
Comparison  
Magnitude OSSIE  P-HAL-OE  
Total 
framework 
memory 
footprint 

1426 kBytes 50 kBytes 

Interface 
packet 
delay  

Variable. Average 
6.9 cycles per 32-bit 
word when a packet 
length of 1024 
words is used for 
internal communica-
tions. 

Deterministic and 
adjustable.  
Components execu-
tion is pipelined. 
Delay is independ-
ent of packet size or 
destination location 

Framework 
run-time 
overhead 

Unknown.  
POSIX system calls 
time delays are 
unpredictable  

Restricted to less 
than 10% of total 
CPU time 

 
Besides the huge difference in the total memory 

foot-print (very important in SDR environments), we 
appreciate the time accuracy of P-HAL-OE. Pipelined 
process scheduling and the fact that P-HAL restricts 
background processing tasks to less than 10% (of the 
total CPU time) provides the designer with the cer-
tainty of what his application could suffer from when 
implementing his waveform in a component based 
environment, instead of an ad-hoc one (without a 
framework). 

In addition, SCA-based radios experience from un-
predictable delays because of the presence of uncon-
strained lower software layers (CORBA middleware 
and POSIX) [3]. These delays could be harmful in 
certain situations, such as in TDMA-based systems 
(e.g. GSM), where time slots must be filled at exact 
times. 
 
3. Conclusions 
 

This paper presents an operating environment which 
faces the challenges for next generation (cognitive) 
radio communications. It is able to assure real-time 
waveform requirements with limited computing re-

sources. Moreover, minimum overhead as the design 
premise leads to a lightweight implementation, with 
very low memory footprint and deterministic time 
overhead. A comparison with SCA-based SDR frame-
works has demonstrated the main advantages of our 
proposal. Finally, a component-based design, having 
cognitive functionalities and tools for the management 
of all system resources, will characterize P-HAL-OE as 
an efficient and easily extensible operating environ-
ment for next generation cognitive radios. 
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