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Abstract 

This paper presents a novel JRRM strutegy based on 
reiiforcenieiit learning mechanisms that control a 
Fuzzy-Neural algorithm to ensure certaiii QoS 
constraints. Three RATs (Radio Access Technologies), 
namely CTMTS, GERAN and K U N  are considered as 
conimon available technologies fo select. The Fuzq  
logic allows for u very simple handling of the Joint 
Radio Resource Manager simp& by activating a set of 
ides .  The membership jiriictions colaidered by these 
rules are adaptive so that a desired pe~ormance in 
terms of the probability of user satisfaction cun be 
guaranteed by means of the reinforcement leomirzg 
olgorithm. Some illustrative simulation results to 
evaluate the behaviour of the proposed JRRM technique 
ure presented. 

1. Introduction 

In parallel with the development of 3G other 
wireless access technologies have experienced a 
significant growth and have arrived to the mass-market. 
This is the case of the Wireless Local Area Networks 
(WAN), with IEEE 802.1 1 being one of their most 
representative members. MAN technologies are able to 
provide much higher bandwidths than those currently 
available in the existing cellular systems, though in more 
reduced coverage areas. On the other hand, in the field of 
celluIar systems, the extension of 2G systems to 2.5G 
including packet transmission capabilities in the radio 
interface has been a first milestone in the evolution path 
of 2G celldar systems towards 3G. 

As a result, 3G is coexisting not only with previous 
2G and 2.33 systems but also with WLAN systems. 
These new scenarios must indeed be regarded as a new 
challenge to offer an efficient and ubiquitous radio 
access by means of a coordinate use of the available 
Radio Access Technologies (RATs). In this way, not 
only the user can be served through the RAT that fits 
better to the terminal capabilities and service 
requirements, but also a more eficient use of the 

available radio resources can be achieved. This challenge 
calls for the introduction of new Radio Resource 
Management (RRM) algorithms operating from a 
common perspective that take into account the overall 
amount of resources in the available RATs, and therefore 
are referred as JRRM (Joint Radio Resource 
Management) algorithms. These new' scenarios include 
reconfigurability capabilities at different levels of the 
network and terminals [ 11. 

Not many approaches to the JRRM concepts 
leading to attain QoS with an optimal usage of the radio 
resources caf~ be encountered in the literature so far. An 
IP end-to-end architecture involving different network 
domains is presented in 121, being the JRRM a key 
element. In' turns, (31 presents an interesting framework 
for the provision of JRRM argorithms to deaI with the 
high degree of complexity associated to heterogeneous 
networks scenarios. The benefit related to load balancing 
among the different RATs involved appears in [4]. On 
the other hand, the architecture impacts in terms of 
loose, tight and very tight 'coupling have been introduced 
in the 3GPP for GERAN 'and UMTS [SI. AI1 the above 
contributions, among others, have been basically focused 
on partial aspects concerning JRRM and no specific 
algorithms have been provided io assess relative 
improvements among different JREZM strategies even in 
simple scenarios. 

This paper presents a comprehensive scenario 
where developing JRRM strategies taking full advantage 
of the reconfigurable equipment capabiIities and the 
diversity offered by available RATS in a multi-radio 
environment. In that respect, a Joint RRM framework for 
algorithm development based on a Fuzzy-neural 
methodology was already presented in [6] .  In such 
uncertain scenarios, Iearning from interaction is a 
foundational idea underlying learning theories and 
intelligence. Interacting produces a wealth of 
information about cause and effect, about the 
consequences of actions, and about what to do in order 
to achieve explicit goals. Taking this into account, this 
paper introduces the use of reinforcement learning 
mechanisms over the Fuzzy-neural methodology in order 
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to cope with the complexities and uncertainties risen by 
these new scenarios. 

The rest of the paper is organised as follows. In 
Section 2, the proposed Fuzzy-neural approach as the 
basis for JRRM formulation is described. For a better 
understanding of the proposed kamework, the different 
steps are illustrated, Section 3 describes the considered 
scenario as well as some considerations about the RATs 
and functionalities included in the simulation model. In 
turn, Section 4 presents some reouIts to analyse the 
behaviour of the proposed JRRM strategy. Finally, 
Section 5 summarises the conclusions reached in this 
work. 

2, Fuzzy neural based jRRM algorithms 

n e  fuzzy subset methodology has been proved to 
be good at explaining how to reach the decisions from 
imprecise information by using the concepts of fuzzifier 
and d e k i f f i e r  rules and the inference engine concept 
[7]. The use of this methodology has been widely 
proposed in different fields in the Iiterature [3][8]. In the 
framework of heterogeneous networks, one of the 
problems that JRRM algorithm must face is the 
existence of uncertainties when comparing different 
measurements belonging to different RATs that are 
necessarily of a different nature together with subjective 
criteria that have to do with techno-economic issues. As 
a result, the use of fuzzy logic as a robust decision 
making procedure becomes a possible solution for 
JRRM algorithm development. However, pattern aspects 
like the selected membership functions and their 
particular shapes are still rather subjective in this 
solution. On the other side, the use of neural networks 
that are good in recognizing patterns by means of 
learning procedures could also be considered. As a 
consequence, hybrid systems incorporating both fuzzy 
and neural methodologies have been proposed in 
different fields to overcome the aforementioned 
drawbacks of fiuzy and neural based systems 
respectively [ 9 ] [  111. Taking these considerations into 
account, a Fuzzy-neural framework is proposed in this 
paper as a good candidate for the solution of JFtRM 
related issues. 

For a better understanding of the JRRM framework 
statement, the objective of the problem considered here 
is to select the most appropriate RAT taking into account 
different algorithm inputs that include system 
measurements, Furthermore, a certain amount of 
resources (i.e. bit rate or bandwidth) are also allocated 
in the selected RAT by the algorithm. In addition, the 
proposed algorithm could easily be extended to take into 
account techno-economical aspects like user/operator 
subjective preferences in terms of e.g. cost, by 
combining the decision of the fuzzy neural algorithm 
with the user/operator preferences by means of a 

multiple decision procedure [6 ] .  According to Figure 1, 
three main blocks are identified, named fuzzy neural, 
reinforcement learning and multiple decision making. 
These blocks represent a general framework including 
both technical and economical aspects. Nevertheless, the 
focus of the paper will be on the fuzzy neural algorithm 
including reinforcement learning so the multiple decision 
making procedure will not be considered. The 
description of the fuzzy neural blocks and reinforcement 
learning algorithm is detailed in the following 
subsections. 
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Figure I. Block diagram of the proposed JRRM 
algorithm 

2.1 Fuzzy Neural algorithm 

The purpose of the fuzzy neural algorithm is to 
obtain for each RAT a numerical indication (denoted as 
Fuzzy Selected Decision: FSD) between 0 and 1 of the 
suitabitity to select the RAT. The decision is obtained 
from a set of input linguistic variables (LVJ, reflecting 
technical measurements. This decision is taken in three 
steps, as depicted in Figure 1. 

Step 1. Fuzzification. The objective of this process 
is to assign, for each input linguistic variable, a value 
between 0 and 1 corresponding to the degree of 
membership of this input to a given Fuzzy Subset or 
Term, A Fuzzy Subset is a linguistic subjective 
representation of the input variable. A total of 7 
linguistic variables are considered here to describe the 
proposed JRRM approach. They are: 

SSmS, SSGERAN, SS": Received Signal 
Strength for each of the considered RATs. 

RAWS, RAGERAN, RAWAN: Resource Availability 
in each of the considered RATS. 

MS: Mobile Speed. 
Although other variables could have been chosen, it 

has been considered that the selected ones capture the 
main aspects influencing over the final performance. 

The degree of membership value is obtained 
through the membership fbnctions px(LV;) where LVi is 
the linguistic input variable and X the fuzzy subset. A 
number of Fuzzy Subsets are considered for each one of 
the linguistic variables: 

Fuvy subset for RA: X E {L (Low), M (Medium) 
and H (High)} 
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I Fuzzy subset for MS: X E { L (Low) and H (High)) 
Fuzzy subset for SS: X E (L (Low) and H (High)) 
The shape of each membership fimction is a bell 

shaped function easy to derivate in the reinforcement 
learning procedure. 

Step 2. Inference Engine. For each combination of 
fuzzy subsets from step 1, the inference engine makes 
use of some predefined fuzzy rules to indicate, for each 
RAT, the suitability of selecting it. So, at the output of 
this step there will be a combination of three output 
linguistic variables D (D-s, DG~-, DWLAN) each with 
four fuzzy subsets: Y(yes), N (not), PY (probably yes) 
and PN (probably not) with different degrees of 
membership for each linguistic variable. In turn, in order 
to take into account bandwidth aIlocation, other two 
output linguistic variables B (BWTS, B G E ~ N )  are 
considered, each one with three fuzzy subsets: H (high), 
M (Medium), L(L0w). No provision for bandwidth has 
been considered for W A N  as long as 802.1 l b  can not 
guarantee any rate. An example of an inference rule 
could be: If (SSmS=H, SSGE-=L, SSWWL, 
RAmS=€€, RAGE-H, RAwt*M, MS=L) then 
(DuMTs=Y, DGEMN=N DWLAPFN, BWS=H, BGEMPFL). 

Notice that, since we are considering 7 linguistic 
variables, there would be 33232=432 input combinations. 
It is considered that each of the 432 input combinations 
has a metric value given by the minimum o f  the 
membership values of the corresponding 7 linguistic 
variables involved. Then, assuming that the above 
example corresponds to the j-th combination, the output 
value would be : py( D-~)~=~.IN(DGE-)~=~"( DWLAN)j= 
~H(B~TsX=~L(BGERAN)~= ~~~[PHH(SSUMTS), PL(SSGEIIAN), 
PL(SSWLAN), p ~ ( " n s ) ,  PH(WERAN). P M ( ~ W L A N ) ,  

pL(MS)]. This value incorporates the commitment of all 
the involved variables on the reliability of this 
combination So as a result of these rules, and for every 
input combination, an output Combination with a 
numerical membership value is obtained for each RAT. 

The outputs from all the different combinations 
leading to the same fuzzy subset of a given output 
linguistic variable (e.g. all the combinations leading to 
D-s=PN) should be considered together in order to 
obtain the membership value for this subset. Particularly, 
it is assumed that the total membership value will be the 
sum of the numerical outputs from each combination. As 
an example, and for the fuzzy subset h = P N ,  the 
membership value would be: 

where j accounts for all the combinations leading to 
DMTS=PN. Summarising, as a result of the inference 

engine there will be three linguistic variables &S, 
DGEMN, D ~ A N  each one with four fuzzy subsets 
(Y,PY,PN,N) and two linguistic variables B-s, BGEw 
each one with three fuwy subsets (H,M,L) and a 
membership value for each linguistic variable in each 
fuzzy subset. 

Step 3. Defuzzification. Finally, the defuzzification 
procedure converts the outputs of the inference engine 
into a crisp value, that is, a number ranging between 0 
and 1, named Fuzzy Selected Decisions: F S h S ,  
FSDoERAN and FSDWAN for each RAT. Possible values 
of FSD based in the centre of area deffhzification 
method would be 191: 

Again, mLi, mMi, mHl and cr~,,  OM^,  OH^ (i=1,2) are 
parameters of the algorithm. BW-, and 
BWGERAN,- are the maximum bandwidths available at 
UMTS and GERAN, respectively. 

2.2 Reinforcement Learning 

This procedure is used to suitably tune the 
parameters (means, deviations, shapes, etc.) of the 
different functions involved in the fuzzy logic controller. 
After a first selection of the parameters, they are adjusted 
by means of the reinforcement learning procedure [9]  in 
order to ensure a certain target value of a given QoS 
parameter. Particularly, the proposed JRRM algorithm 
considers the ratio of non-satisfied users (i.e. the users 
that receive a bandwidth below a certain desired value 
BW,). Then the input signal for the reinforcement 
learning procedure would be: 
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where PI* would be the target value of the ratio of non- 
satisfied users (e.g. 2% of unsatisfied users) and Pl(t) the 
real value measured at time t. In order to ensure the 
corresponding target value the reinforcement learning 
algorithm adjusts the different parameters to minimise 
the error E(t) defined as: 

Then, the criterion to update a parameter w(t) in any 
membership function (e.g. w(t) can be any of the 
parameters in the fuzzification and defuuification 
functions like mNi,  ON^, mHi,  OH^, ..,) would be: 

where q is the learning ,rate and the membership 
parameters w are moved to reduce the error E(t). The 
derivatives of dP,(i)/ &(t) for parameters w(t) of the 
defuzzification process are computed from the derivative 
of expressions (2) to (6). In turn, for the parameters w(t) 
belonging to the membership functions of the 
fuzzification process, the error signal is back propagated 
from the defuzzification to the hzification process [9] .  

3. Simulation scenario and considerations 

The proposed Fuzzy-neural algorithm has been 
evaluated through simuIations in a simplified scenario in 
order to analyse its behaviour and to tune and validate 
the parameters that have more impact over the final 
decision. The considered scenario consists in three 
concentric cells, with radii RI,  R2 and R3, defining 
WLAN, UMTS and GERAN dominant areas 
respectively. A mobility model with users moving 
according to a random walk inside the coverage area is 
adopted. The 1800 MHz band is assumed for G E M .  
Consequently, due to the proximity between UMTS and 
GERAN bands, the same propagation model can be 
considered for both systems.. It is given by 
L=128.1+37.6 log d(km) [IO]. For WLAN the 
propagation losses are modelled by L= 20 logd(m)+4O. 
Call arrivals follow a Poisson scheme with an average 
number of 6 calls per user and hour and exponential call 
duration with average 180 s. 

A single UTRAN FDD carrier is considered for 
UMTS, with a maximum uplink load factor of 0.75. In 
turn, for GERAN, coding’scheme CS-4 is considered, 
thus having a maximum bit rate per camer of 160 kb/s. 

Results are presented for the uplink direction, and 
the considered possible bit rates for each RAT are: 

t 

UMTS: (32, 48, 64, 80, 96, 112, 128, 192, 256, 320, 
384) kb/s. 
G E M :  (32,48,64, 80,96} kbls. 

For WLAN it is considered that the 11 Mb/s total 
bandwidth available is equally distributed among the 
WAN users. It is also assumed that no more WLAN 
users are accepted when the bandwidth per user is less or 
equal than 384 kb/s. A single access point is considered. 
It is worth mentioning that CFP (Contention free period) 
mechanisms allow that different users share a WLAN 
channel simply scheduling the transmissions on top of 
the MAC so that the same bit rate per user is allocated 

The allocated bit rate decided by the fuzzy neural 
algorithm will be given by rounding ( 5 )  or (6) to the 
cIosest bit rate for UMTS or for G E M ,  respectively. 

The RA (Resource availability) is defined here as 
RA=1-p depending on each RAT, as folIows: 

For UMTS, p is the uplink cell load factor 
For GERAN p=Number of occupied slots /Total 

number of slots 
For WLAN: p=Current ThroughputiMaximum 

Throughput 
With respect to performance measurements, the 

concepts of service non-satisfaction and outage are 
considered. Then, on one hand a user is “not satisfied” 
when the allocated bandwidth is below a certain value, 
for instance 40 kb/s if the assigned RAT is GERAN and 
192 kb/s if the assigned RAT is UMTS or WAN. On 
the other hand, a user can also be “not satisfied” if it is 
“in outage” for the considered RAT, which means that 
the fuzzy system assigns a RAT to the user but the 
received power is below the minimum requirement. 

The required transmitted power by a given user in 
UMTS is [14]. 

1131. 

with PT,~, Lp,i and &,i being the transmitted power, 
the path loss and the bit rate for the i-th user, 
respectively. (EbMo)i=3dB is the target requirement, 
Pw-106 dBm the receiver thermal noise power, 
W=3.84Mc/s the bandwidth and qm the uplink load 
factor, which depends on the number of allocated users 
and their bit rates [12]. The maximum power available at 
the terminal is 21 dBm, so that if (PT,i>21 a m ) ,  the 
user will be in outage 

In case of G E M  it is assumed that there is no 
outage since GERAN covers the entire area. In case of 
WLAN the user is in outage if the received power is 
below a sensitivity value of -1 39 dBm. 
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The Neuro-Fuzzy algorithm is activated every 100 
ms so that the allocated resources can be changed 
dynamically to the active users. 

4, Results 

An initial result is shown in Figure 2 to present the 
behaviour of the FSD values under a controlled situation. 
There are 12 users scattered in the scenario, with a 
generation rate of 6 calls per user and hour on the 
average, and an average call duration of 180 s. A 
reference mobile is assumed to move in a straight 
direction from the centre to the cell edge and then in the 
back direction. The cell radius is 0.2 km for WLAN, 
2km for UMTS and 3km for GERAN. Furthermore, 4 
camers are available in this case in the GERAN cell. In 
Figure 2(a), the distance of this reference mobile to the 
cell site as the user moves around is shown as a function 
of the simulation time measured in frames of IOms. In 
turn, in Figure 20) the time evolution of the FSD for the 
three RATS of the reference mobile is plotted. The 
allocated RAT is the one with the highest FSD. It can be 
noticed that the alIocated RAT changes as the mobile 
moves around. In particular, the arrows stress three 
representative snapshots: 1) At about I km distance 
UMTS is the preferred network. In this case WLAN is 
not available, while GERAN is not the best option 2) At 
about 2.5 km, the FSD value for GERAN indicates that 
G E M  would be the choice (clearly, at this distance 
there is neither UMTS nor W A N  availability) and 3) 
Close to the cell site, the choice is for W A N .  

. (3) I I I 
I 

reinforcement learning mechanisms is shown in Figure 
3, where the convergence of the percentage of non- 
satisfied users is plotted for two different target values, 
Pr*=3% and 1%. In this case the'cell radius is 0.2 km for 
WLAN and 2 km for UMTS and GERAN. For G E M  
a single carrier has been considered. It can be observed 
that, after an initial starting up process, the steady 
situation is attained and the probability of users not 
being satisfied with the service is not significantly 
impacted in the rest of the system evolution. That is, 
once overcome the initial transient, the membership 
functions adjust their values in the normal operative 
phase and the PI* target is practically attained regardless 
the actual number of active users, user's position, speed 
and mobility features, and propagation losses variation. 

I 7 ,  

I J 
500000 1 DOODOD ISDOOW 20M)WC 

Blmulalton Tlme 

Figure 3. Percentage of non satisfied users towards 
convergence at starting up phase 

Figure 4 shows the evolution of the probability'of 
non-satisfied users and the blocking probability as a 
function of the number of users in the scenario. The 
presented values correspond to the average quantities 
measured aRer simulation convergence. It can be 
observed that the proposed TRRM algorithm is able to 
keep the non-satisfied users ratio at the target value of 
3% for the admitted users,' at the expense of an increase 
in the blocking probability. In that sense, the JRRM 
algorithm executes an inherent admission control by 
blocking a user when, at the session start, the allocated 
bandwidth to him is 0. Notice that the blocking 
probability starts to increase when the number of 
admitted users reaches the capacity limit for the 
considered scenario. 

74 

10 15 20 25 30 
"br d Y l r m  

Figure 4. Blocking ratio and non satisfaction 
probability measured after algorithm convergence 

In tum, the capacity to control the system 
performance with the tools provided by the 
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Furthermore, the robustness of the convergence 
mechanisms under changes in the system state is shown 
through an additional experiment, in which the number 
of active users has been progressively increased. Figure 
5 plots the number of active users and the evolution of 
the non-satisfaction probability. There are initially four 
users moving around the scenario and, at frame 1500000, 
four more users join progressively and demand services. 
It is assumed in this example that once a user has joined 
the system, it transmits continuously and moves around 
the scenario with a constant speed of 3 k”h. As long as 
the traffic increase can still be accommodated with the 
conjunction of the available RATS in the service area, 
the ratio of non-satisfied users keeps the target value 
F,*=I%. Nevertheless, the fuzzy subset parameters are 
modified accordingly, and it could be observed (not 
shown for the sake of brevity) that the membership 
functions behave properly, for example, as the number of 
users increases the mean value of RA- H decreases, 
while the mean value of R A M S  L increases. 

I 
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Figure 5, EvoIution of the non satisfaction probability 
measured when the offered load varies 

5. Conclusions 

A novel JRRM proposal based on a Fuzzy-Neural 
algorithm with reinforcement learning ‘has been 
introduced and analyzed in a scenario including UMTS, 
GERAN and WLAN radio access technologies. A simple 
cell deployment has been considered in order to easily 
evaluate the algorithm behaviour. The best RAT and the 
allocated bit rate are provided to each user in both the 
admission phase and along the session duration. The 
resulting Fuzzy neural scheme allows for a very simple 
handling of the Joint Radio Resource Manager by simply 
activating a set of rules. It has been shown that the 
reinforcement leaniing algorithm allows achieving the 
target value of the probability of non-satisfied users after 
a starting-up phase and this. target value is maintained in 
the presence of varying traffic conditions during the 
operative phase. 
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